Get access

Quantum yields of photosynthesis at temperatures between −;2°C and 35°C in a cold-tolerant C3 plant (Pinus sylvestris) during the course of one year

Authors


Dr J. W. Leverenz, Department of Plant Physiology, University of Umea, S-901 87 UmeÅ, Sweden.

Abstract

Abstract Quantum yields of photosynthetic CO2 uptake by Pinus sylvestris (L.) shoots were measured at temperatures between −; 2°C and 35°C from September 1984 to September 1985. The ratio of variable to peak fluorescence of photosystem II (Fv/Fp) was also measured. Quantum yield measured at 25°C varied with time from a low winter value of 0.017 to a high summer value of 0.057. This variation was strongly correlated to variation in FvFp(r2= 0.91).

The response of quantum yield to temperature changed with season. During winter, quantum yield was essentially constant between 0°C and 35°C. The constancy above 5°C was associated with a strong increase in intercellular space CO2 (Ci) with temperature. In June, the quantum yield peaked at 5°C, decreased sharply below 5°C, and was rather constant between 25°C and 35°C. This insensitivity to increased temperature above 25°C was attributed to a large increase in Ci In contrast, by September, the quantum yield was less sensitive to temperature below 5°C and more sensitive above 25°C, despite an unchanged Ci response with increasing temperatures as compared with June. In August, quantum yields were lowered at 0, 5 and 15°C, apparently as a result of high carbohydrate levels in the leaves. Overall, the results suggest that there are sites other than in photosystem II or at ribulose bisphosphate carboxylase/oxygenase at which the quantum yield of photosynthetic CO2 uptake is affected. Possible causes for the changes in efficiency are discussed.

Get access to the full text of this article

Ancillary