A two-way gas transport system in Nelumbo nucifera


Dr W. Grosse, Botanisches Institut der Universität zu Köln, Gyrhofstr. 15,5000 Köln 41, F.R.G.


Abstract The aquatic vascular plant Nelumbo nucifera Gaertn. is able to improve its oxygen supply to the submerged and buried organs by a thermo-osmotic gas transport. Investigations with tracer gas and oxygen measurements have shown that thermo-osmotic gas transport exists in N. nucifera when there is a temperature difference between the lacunar air of the leaves and the surrounding atmosphere. The gas transport was increased by up to 935% when a temperature difference of 2.9 ± 1.0 K was detected. Lacunar pressure of up to 166 ± 44 Pa was measured in both young and old leaves. In contrast to the flow-through ventilation system recently described for Nuphar lutea and Nymphoides peltata, a two-way flow in separate air canals in the petioles of both young and old Nelumbo leaves may carry oxygen-rich air down to the rhizome and excess air back to the atmosphere. Anatomical investigations have shown that, in Nelumbo, the two largest air canals of the petiole end directly under the mesh system of the centre plate. These large air canals are proposed to be predominant in the upward flow of air in sunlight. The other air canals of the petiole veer into the leaf blade well below the centre plate. The gas flow system through fresh leaves may carry as much as 10.3 ± 4.5 cm3 air per minute to the buried rhizome.