• Cucumis sativus L.;
  • cucumber;
  • Phaseolus vulgaris L.;
  • bean;
  • Zea mays L.;
  • corn;
  • maize;
  • carbon dioxide;
  • chilling;
  • CO2;
  • gas exchange;
  • osmotic adjustment, photosynthesis;
  • transpiration;
  • water potential;
  • water relations;
  • water stress


Bean, cucumber and corn plants were grown in controlled-environment chambers at 25/18 °C day/night temperature and either ambient (350 μmol mol−1) or elevated (700 μmol mol−1) CO2 concentration, and at 20–30 d after emergence they were exposed to a 24 h chilling treatment (6.5 ± 1.5 °C) at their growth CO2 concentration. Whole-plant transpiration rates (per unit leaf area basis) during the first 3 h of chilling were about 26,28 and 13% lower at elevated than at ambient CO2 for bean, cucumber and corn, respectively. The decline in leaf water potential (ψL) and visible wilting of bean and cucumber during chilling were significantly less at elevated than at ambient CO2. Corn ψL was not significantly affected by chilling, and corn did not exhibit any other symptoms of chilling-induced water stress. Leaf osmotic potentials (measured before chilling only) of bean and cucumber were more negative at elevated than at ambient CO2, and the corresponding calculated leaf turgor potentials were significantly higher at elevated than at ambient CO2. Leaf relative water content (RWC) during chilling at ambient CO2fell to 62 and 48% for bean and cucumber, respectively. RWC during chilling at elevated CO2 was never below 79% for bean or 63% for cucumber. Corn RWC was not measured. After 24 h of chilling at ambient CO2, net photosynthetic rate (PN) reductions were 83, 89 and 24% for bean, cucumber and corn, respectively. PN reductions during chilling were less at elevated CO2: 53, 40 and 4% for bean, cucumber and corn, respectively. At ambient CO2, none of the species fully recovered to pre-chilling PN, but at elevated CO2 both bean and corn recovered fully. The average percentage leaf area with visible leaf damage due to chilling was 20.6 and 9.6% at ambient and elevated CO2, respectively, for bean, and 32.4 and 23.6% at ambient and elevated CO2, respectively, for cucumber. Corn showed no significant permanent leaf damage from chilling at either CO2 concentration. These results indicate that cucumber was most sensitive to chilling as imposed in this study, followed by bean and corn. The results support the hypothesis that, at least in young plants under controlled-environment conditions, elevated CO2 improves plant water relations during chilling and can mitigate photosynthetic depression and chilling damage. The implications for long-term growth and reproductive success in managed and natural ecosystems will require testing of this hypothesis under field conditions.