SEARCH

SEARCH BY CITATION

REFERENCES

  • Aarts M.G.M., Koncz C. & Pereira A. (2000) Transposon and T-DNA mutagenesis. In Arabidopsis, a Practical Approach (ed. Z.A. Wilson), pp. 143169. Oxford University Press, London.
  • Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. & Lipman J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.DOI: 10.1093/nar/25.17.3389
  • Baker A.J.M. & Brooks R.R. (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81126.
  • Baker A.J.M. & Proctor J. (1990) The influence of cadmium, copper, lead and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Systematics and Evolution 173, 91108.
  • Bert V., De Macnair M.R., Laguerie P., Saumitou-Laprade P. & Petit D. (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist 146, 225233.
  • Boyd R.S. & Martens S.N. (1992) The raison d'être for metal hyperaccumulation by plants. In The Vegetation of Ultramafic (Serpentine) Soils: Proceedings of the First International Conference on Serpentine Ecology (eds A.J.M. Baker, J. Proctor & R.D. Reeves), pp. 279289. Intercept, Andover.
  • Boyd R.S. & Martens S.N. (1994) Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70, 2125.
  • Boyd R.S., Shaw J.J. & Martens S.N. (1994) Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. American Journal of Botany 81, 294300.
  • Davis M.A. & Boyd R.S. (2000) Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator, Strepthanthus polygaloides (Brassicaceae). New Phytologist 146, 211217.
  • Eide D., Broderius M., Fett J. & Guerinot M.L. (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Science USA 93, 56245628.
  • Eng B.H., Guerinot M.L., Eide D. & Saier M.H.Jr (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. Journal of Membrane Biology 166, 17.
  • Ernst W.H.O. (1968) Der Einfluß der Phosphatversorgung sowie die Wirkung von ionogenem und chelatisiertem Zink auf die Zink und Phosphataufnahme einiger Schwermetallpflanzen. Physiologica Plantarum 21, 323333.
  • Ernst W.H.O. & Nelissen H.J.M. (2000) Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils. Environmental Pollution 107, 329338.DOI: 10.1016/s0269-7491(99)00174-8
  • Escarré J., Lefèbvre C., Gruber W., Leblanc M., Lepart J., Rivière Y. & Délay B. (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytologist 145, 429437.
  • Ghaderian Y.S.M., Lyon A.J.E. & Baker A.J.M. (2000) Seedling mortality of metal hyperaccumulator plants resulting from damping off by Pythium spp. New Phytologist 146, 219224.
  • Gitan R.S., Luo H., Rodgers J., Broderius M. & Eide D. (1998) Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. Journal of Biological Chemistry 273, 2861728624.
  • Gitan R.S. & Eide D.J. (2000) Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochemical Journal 346, 329336.DOI: 10.1042/0264-6021:3460329
  • Grotz N., Fox T.C., Connolly E., Park W., Guerinot M.L. & Eide D. (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Science USA 95, 72207224.
  • Heath S.M., Southworth D. & Dallura J.A. (1997) Localization of nickel in epidermal subsidiary cells of leaves of Thlaspi montanum var siskiyouense (Brassicaceae) using energy-dispersive X-ray microanalysis. International Journal of Plant Science 158, 184188.
  • Huang L. & Gitschier J. (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nature Genetics 17, 292297.
  • Ingrouille M.J. & Smirnoff N. (1986) Thlaspi caerulescens J. & C. Presl (T. alpestre L.) in Britain. New Phytologist 102, 219233.
  • Klein P., Kanehisa M. & DeLisi C. (1985) The detection and classification of membrane-spanning proteins. Biochimica et Biophysica Acta 815, 468476.
  • Krämer U., Smith R.D., Wenzel W.W., Raskin I. & Salt D.E. (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Hálácsy. Plant Physiology 115, 16411650.
  • Küpper H., Zhao F.J. & McGrath S.P. (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology 119, 305311.DOI: 10.1104/pp.119.1.305
  • Lasat M.M., Baker A.J.M. & Kochian L.V. (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiology 112, 17151722.
  • Lasat M.M., Baker A.J.M. & Kochian L.V. (1998) Altered zinc compartmentation in the root symplasm and stimulated Zn2+ absorption into the leaf as mechanisms involved in zinc hyperaccumulation in Thlaspi caerulescens. Plant Physiology 118, 875883.DOI: 10.1104/pp.118.3.875
  • Lasat M.M., Pence N.S., Garvin D.F., Ebbs S.D. & Kochian L.V. (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany 51, 7179.DOI: 10.1093/jexbot/51.342.71
  • Macnair M.R., Bert V., Huitson S.B., Saumitou-Laprade P. & Petit D. (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proceedings of the Royal Society, London, Series B 266, 21752179.
  • Martens S.N. & Boyd R.S. (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defence. Oecologia 98, 379384.
  • Meerts P. & Van Isacker N. (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecology 133, 221231.
  • Newman T., Debruijn F.J. & Green P., et al. (1994) Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiology 106, 12411255.DOI: 10.1104/pp.106.4.1241
  • Palmiter R.D., Cole T.B. & Findley S.D. (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO Journal 15, 17841791.
  • Pence N.S., Larsen P.B., Ebbs S.D., Letham D.L.D., Lasat M.M., Garvin D.F., Eide D. & Kochian L.V. (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Science USA 97, 49564960.
  • Pollard A.J. & Baker A.J.M. (1997) Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytologist 135, 655658.
  • Reeves R.D. (1992) The hyperaccumulation of nickel by serpentine plants. In The Vegetation of Ultramafic (Serpentine) Soils: Proceedings of the First International Conference on Serpentine Ecology (eds A.J.M. Baker, J. Proctor & R.D.,Reeves), pp. 253277. Intercept, Andover.
  • Schat H., Vooijs R. & Kuiper E. (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50, 18881895.
  • Schat H., Llugany M. & Bernhard R. (1999) Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and non-hyperaccumulating metallophytes. In Phytoremediation of Contaminated Soils and Water (eds N. Terry & G. Banuelos), pp. 171188. CRC Press LLC, Boca Raton, FL, USA.
  • Sonnhammer E.L.L., Von Heijne G. & Krogh A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (eds J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff & C. Sensen), pp. 175182. AAAI Press, Menlo Park, CA, USA.
  • Thomine S., Wang R.C., Ward J.M., Crawford N.M. & Schroeder J.I. (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Science USA 97, 49914996.
  • Van der Zaal B.J., Neuteboom L.W., Pinas J.E., Chardonnens A.N., Schat H., Verkleij J.A.C. & Hooykaas P.J.J. (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology 119, 10471055.DOI: 10.1104/pp.119.3.1047
  • Vázquez M.D., Poschenrieder CH., Barceló J., Baker A.J.M., Hatton P. & Kope G.L. (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J & C Presl. Botanica Acta 107, 243250.
  • Wenzel H.J., Cole T.B., Born D.E., Schwartzkroin P.A. & Palmiter R.D. (1997) Ultrastructural localization of Zn transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proceedings of the National Academy of Science USA 94, 1267612681.
  • Zhao H. & Eide D. (1996a) The yeast ZRT1 gene encodes the zinc transporter protein of a high affinity uptake system induced by zinc limitation. Proceedings of the National Academy of Science USA 93, 24542458.
  • Zhao H. & Eide D. (1996b) The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. Journal of Biological Chemistry 271, 2320323210.