Improved temperature response functions for models of Rubisco-limited photosynthesis


  • *Current address: University of Michigan Biological Station, 9008 Biological Road, Pellston, MI 49769, USA.

  • †Permanent address: Departamento de Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropedica, 23851–970 Brazil.

Correspondence: Stephen P. Long. Fax: +1 217 244 7563; e-mail:


Predicting the environmental responses of leaf photosynthesis is central to many models of changes in the future global carbon cycle and terrestrial biosphere. The steady-state biochemical model of C3 photosynthesis of Farquhar et al. (Planta 149, 78–90, 1980) provides a basis for these larger scale predictions; but a weakness in the application of the model as currently parameterized is the inability to accurately predict carbon assimilation at the range of temperatures over which significant photosynthesis occurs in the natural environment. The temperature functions used in this model have been based on in vitro measurements made over a limited temperature range and require several assumptions of in vivo conditions. Since photosynthetic rates are often Rubisco-limited (ribulose, 1-5 bisphosphate carboxylase/oxygenase) under natural steady-state conditions, inaccuracies in the functions predicting Rubisco kinetic properties at different temperatures may cause significant error. In this study, transgenic tobacco containing only 10% normal levels of Rubisco were used to measure Rubisco-limited photosynthesis over a large range of CO2 concentrations. From the responses of the rate of CO2 assimilation at a wide range of temperatures, and CO2 and O2 concentrations, the temperature functions of Rubisco kinetic properties were estimated in vivo. These differed substantially from previously published functions. These new functions were then used to predict photosynthesis in lemon and found to faithfully mimic the observed pattern of temperature response. There was also a close correspondence with published C3 photosynthesis temperature responses. The results represent an improved ability to model leaf photosynthesis over a wide range of temperatures (10–40 °C) necessary for predicting carbon uptake by terrestrial C3 systems.