SEARCH

SEARCH BY CITATION

REFERENCES

  • Achuo A.E., Audenaert K., Meziane H. & Hofte M. (2002) The SA-dependent defense pathway is active against different pathogens in tomatoe and tobacco. Mededelingen Faculteit Landbouwkundige En Toegepaste Biologische Wetenschappen Universiteit Gent, 67, 149157.
  • Baldwin I.T., Oesch R.C., Merhige P.M. & Hayes K. (1993) Damage-induced root nitrogen metabolism in Nicotiana sylvestris: testing C/N predictions for alkaloid production. Journal of Chemical Ecology 0, 30293043.
  • Bartnicki-Garcia S. (1968) Cell wall chemistry, morphogenesis and taxonomy of fungi. Annual Review of Microbiology 22, 87108.
  • Berenbaum M.R. (1995) The chemistry of defence: theory and practice. Proceedings of the National Academy of Sciences USA 92, 28.
  • Bolter C., Latoszek-Green M. & Tenuta M. (1998) Dependence of methyl jasmonate- and wound-induced cysteine proteinase inhibitor activity on nitrogen concentration. Journal of Plant Physiology 152, 427432.
  • Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.
  • Broglie K., Chet I., Holliday M., Cressman R., Biddle P., Kowlton S., Mauvais C. & Broglie R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254, 11941197.
  • Bryant J.P., Chapin III F.S. & Klein D.R. (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357368.
  • Cipollini D. (2002) Does competition magnify the fitness costs of induced resistance in Arabidopsis thaliana? A manipulative approach. Oecologia 131, 514520.
  • Coley P.D., Bryant J.P. & Chapin III F.S. (1985) Resource availability and plant antiherbivore defense. Science 230, 895899.
  • Cooper J.B. & Varner J.E. (1984) Cross-linking of soluble extensin in isolated cell-walls. Plant Physiology 76, 414417.
  • Croft K.P.C., Voisey C.R. & Slusarenko A.J. (1990) Mechanism of hypersensitive cell collapse: correlation of increased lipoxygenase activity with membrane damage in leaves of Phaseolus vulgaris (L.) inoculated with an avirulent race of Pseudomonas syringae pv. phaseolicola. Physiological and Molecular Plant Pathology 36, 4962.
  • Dann E., Diers B., Byrum J. & Hammerschmidt R. (1998) Effect of treating soybean with 2,6-dichlorisonicotinic acid (INA) and benzothiadiazol (BTH) on seed yields and the level of disease caused by Sclerotonia sclerotiorum in field and greenhouse studies. European Journal of Plant Pathology 104, 271278.
  • Datta K.N. & Datta S.K. (1999) Expression and function of PR-protein genes in transgenic plants. In Pathogenesis-Related Proteins in Plants (eds S.Datta & S.Muthukrishnan), pp. 261277. CRC Press, Boca Raton, FL, USA.
  • Dicke M. & Bruin J. (2001) Chemical information transfer between plants: back to the future. Biochemical Systematics and Ecology 29, 981994.
  • Elouakfaoui S. & Asselin A. (1992) Multiple forms of chitosanase activities. Phytochemistry 31, 15131518.
  • Friedrich L., Lawton K., Ruess W., et al. (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant Journal 10, 6170.
  • Görlach J., Volrath S., Knauf-Beiter G., et al. (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8, 629643.
  • Grenier J. & Asselin A. (1990) Some pathogenesis-related proteins are chitosanases with lytic activity against fungal spores. Molecular Plant–Microbe Interactions 3, 401407.
  • Hahlbrock K., Bednarek P., Ciolkowski I., et al. (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proceedings of the National Academy of Science of the USA 100, 1456914576.
  • Hamilton J.G., Zangerl A.R., DeLucia E.H. & Berenbaum M.R. (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecology Letters 4, 8695.
  • Hammerschmidt R., Nuckles E.M. & Kuc J. (1982) Association of enhanced peroxidase-activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology 20, 7382.
  • Heil M. (2001) The ecological concept of costs of induced systemic resistance (ISR). European Journal of Plant Pathology 107, 137146.
  • Heil M. (2002) Ecological costs of induced resistance. Current Opinion in Plant Biology 5, 345350.
  • Heil M. & Baldwin I.T. (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science 7, 6167.
  • Heil M., Hilpert A., Kaiser W. & Linsenmair K.E. (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? Journal of Ecology 88, 645654.
  • Herms D.A. & Mattson W.J. (1992) The dilemma of plants: to grow or to defend. Quarterly Review of Biology 67, 283335.
  • Hoegen E., Strömberg A., Pihlgren U. & Kombrink E. (2002) Primary structure and tissue-specific expression of the pathogenesis-related protein PR-1b in potato. Molecular Plant Pathology 3, 329345.
  • Johnson N.D., Liu B. & Bentley B.L. (1987) The effects of nitrogen fixation, soil nitrate and defoliation on the growth, alkaloids and nitrogen level of Lupinus succulentus (Fabacaea). Oecologia 74, 425431.
  • Johnson N., Rigney L. & Bentley B. (1989) Short-term induction of alkaloid production in lupines. Differences between N2-fixing and nitrogen-limited plants. Journal of Chemical Ecology 15, 24252434.
  • Kombrink E. & Hahlbrock K. (1990) Rapid, systemic repression of the synthesis of ribulose 1,5-bisphosphate carboxylase small-subunit mRNA in fungus-infected or elicitor-treated potato leaves. Planta 181, 216219.
  • Kuc J. (1982) Induced immunity to plant disease. Bioscience 32, 854860.
  • Lagrimini L.M., Gingas V., Finger F., Rothstein S. & Liu T.-T.Y. (1997) Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase. Plant Physiology 114, 11871196.
  • Larsson S., Wiren A., Lundgren L. & Ericsson T. (1986) Effect of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados susceptibility to Galerucella lineola (Coleoptera). Oikos 47, 205210.
  • Lawton K.A., Friedrich L., Hunt M., Weymann K., Delaney T., Kessmann H., Staub T. & Ryals J.A. (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant Journal 10, 7182.
  • Logemann E., Wu S.-C., Schröder J., Schmelzer E., Somssich I.E. & Hahlbrock K. (1995) Gene activation by UV light, fungal elicitor or fungal infection in Petroselium crispum is correlated with repression of cell-cycle-related genes. Plant Journal 6, 865876.
    Direct Link:
  • Van Loon L.C. (1997) Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology 103, 753765.
  • Mauch F., Mauch-Mani B. & Boller T. (1988) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combination of chitinase and β-1,3 glucanase. Plant Physiology 88, 9361042.
  • Mihaliak C.A. & Lincoln D.E. (1985) Growth pattern and carbon allocation to volatile leaf terpens under nitrogen-limiting conditions in Heterotheca subaxillaris (Asteraceae). Oecologia 66, 423426.
  • Moder W., Bunk A., Albrecht A., Doostdar H., Niedz R.P., McDonald R.E., Mayer R.T. & Osswald W.F. (1999) Characterization of acidic chitinases from culture medium of sweet orange callus tissue. Journal of Plant Physiology 154, 296301.
  • Molina A., Görlach J., Volrath S. & Ryals J. (1999) Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance. Molecular Plant–Microbe Interactions 12, 5358.
  • Muzika R.M., Pregitzer K.S. & Hanover J.W. (1989) Changes in terpen production following nitrogen fertilization of grand fir (Abies grandis (Dougl.) Lindl.) seedlings. Oecologia 80, 485489.
  • Neuhaus J.M. (1999) Plant Chitinases (PR-3, PR-4, PR-8, PR-11). In Pathogenesis-Related Proteins in Plants (eds S.K.Datta & S.Muthukrishnan), pp. 77105. CRC Press, Boca Raton, FL, USA.
  • Oostendorp M., Kunz W., Dietrich B. & Staub T. (2001) Induced resistance in plants by chemicals. European Journal of Plant Pathology 107, 1928.
  • Osswald W.F., McDonald R.E., Niedz R.P., Shapiro J.P. & Mayer R.T. (1992) Quantitative fluorometric analysis of plant and microbial chitosanases. Analytical Biochemistry 204, 4046.
  • Pan S.Q., Ye X.S. & Kuc J. (1991) A technique for detection of chitinase, β-1,3-glucanase, and protein patterns after a single separation using polyacrylamide gel electrophoresis or isoelectrofocussing. Phytopathology 81, 970974.
  • Punja Z.K. & Zhang Y.-Y. (1993) Plant Chitinases and their roles in resistance to fungal diseases. Journal of Nematology 25, 526540.
  • Reichardt P.B., Chapin III F.S., Bryant J.P., Mattes B.R. & Clausen T.P. (1991) Carbon/nutrient balance as a predictor of plant defense in Alaskan balsam poplar: potential importance of metabolic turnover. Oecologia 88, 401406.
  • Rhoades D.F. (1979) Evolution of plant chemical defense against herbivores. In Herbivores: Their Interaction with Secondary Plant Metabolites (eds G.A.Rosenthal & D.H.Janzen), pp. 453. Academic Press, New York and London.
  • Ruohomäki K., Chapin III F.S., Haukioja E., Neuvonen S. & Suomela J. (1996) Delayed inducible resistance in mountain birch in response to fertilization and shade. Ecology 77, 23022311.
  • Ryals J., Neuenschwander U., Willits M., Molina A., Steiner H. & Hunt M. (1996) Systemic acquired resistance. Plant Cell 8, 18091819.
  • Schlumbaum A., Mauch F., Vögeli U. & Boller T. (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324, 365367.
  • Sharma P., Borja D., Stougaard P. & Lönneborg A. (1993) PR-proteins accumulating in spruce roots infected with a pathogenic Pytium sp. isolate include chitinases, chitosanases and β-1,3-glucanases. Physiological and Molecular Plant Pathology 43, 5767.
  • Somssich I.E. & Hahlbrock K. (1998) Pathogen defence in plants – a paradigm of biological complexity. Trends in Plant Science 3, 8690.
  • Stout M.J., Brovont R.A. & Duffey S.S. (1998) Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. Journal of Chemical Ecology 24, 945963.
  • Summermatter K., Sticher L. & Metraux J.P. (1995) Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiology 108, 13791385.
  • Waring R.H., McDonald A.J.S., Larsson S.S., Ericsson T., Wiren A., Arwidsson E., Ericsson A. & Lohammer T. (1985) Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia 66, 157160.
  • White T. (1993) The Inadequate Environment – Nitrogen and the Abundance of Animals. Springer, New York, USA.
  • Wilkens R., Spoerke J. & Stamp N. (1996) Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology 77, 247258.
  • Wirth S.J. & Wolf G.A. (1990) Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity. Journal of Microbiological Methods 12, 197205.