Testing the branch autonomy theory: a 13C/14C double-labelling experiment on differentially shaded branches

Authors


A. Lacointe. Fax: +33 (0)4 73 62 44 54; e-mail: lacointe@clermont.inra.fr

ABSTRACT

The impact of a heterogeneous within-crown light environment on carbon allocation was investigated on young walnut trees trained on two branches: one left in full sunlight, the other shaded until leaf fall resulting in 67% reduction in photosynthetically active radiation. In September, the two branches were separately labelled with 14CO2 and 13CO2, respectively, so that the photosynthates from each branch could be traced independently at the same time. Although some carbon movements could be detected within 5 d in both directions (including from the shaded branch to the sun branch), between-branch carbon movements were very limited: approximately 1% of the diurnal net assimilation of a branch. At this time of the year branch autonomy was nearly total, leading to increased relative respiratory losses and a moderate growth deficit in the shaded branch. The ratio of growth to reserve storage rate was only slightly affected, indicating that reserves acted not as a mere buffer for excess C but as an active sink for assimilates. In winter, branch autonomy was more questionable, as significant amounts of carbon were imported into both branches, possibly representing up to 10% of total branch reserves. Further within-plant carbon transfers occurred in spring, which totally abolished plant autonomy, as new shoots sprouted on each branch received significantly more C mobilized from tree-wide reserves than from local, mother-branch located reserves. This allowed great flexibility of tree response to environment changes at the yearly time scale. As phloem is considered not functional in winter, it is suggested that xylem is involved as the pathway for carbohydrate movements at this time of the year. This is in agreement with other results regarding sugar exchanges between the xylem vessels and the neighbouring reserve parenchyma tissues.

Ancillary