Origins of non-linear and dissimilar relationships between epidermal UV absorbance and UV absorbance of extracted phenolics in leaves of grapevine and barley


Erhard E. Pfündel. E-mail:


A recent review of climate patterns in Southern Germany has suggested significant increases in ultraviolet (UV) radiation due to decreases in cloud coverage and in cloud frequency which compound the effects of stratospheric ozone depletion. Whether such UV radiation increases result in UV damage of higher plant leaves depends partly on the capacity of UV-absorbing hydroxycinnamic acids and flavonoids located in the plant epidermis to screen out UV radiation. Epidermal UV screening is most often assessed from UV absorbance of whole-leaf extracts but in the present work, this method is critically examined. In grapevine (Vitis vinifera L.), hydroxycinnamic acid as well as mono-hydroxylated and ortho-dihydroxylated flavonoid concentrations increased in parallel with fluorometrically detected adaxial epidermal UV absorbance but only the latter class of flavonoids was associated with epidermal UV absorbance in barley (Hordeum vulgare L). For both species, curvilinear relationships between epidermal and total phenolic UV absorbance were established: initial slopes of the curves differed markedly between species. Modelling suggested that curvilinearity arises from UV-transparent epidermal areas located between vacuoles which are particularly UV-absorbing due to high levels of phenolics. The species-dependent differences were related to allocation of high amounts of phenolics in the mesophyll and abaxial epidermis in barley but not in grapevine. Both factors, optical heterogeneity and variable distribution of phenolics, severely restrict the use of phenolic absorbance to estimate true epidermal screening.