SEARCH

SEARCH BY CITATION

REFERENCES

  • Agrawal A.A. (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294, 321326.
  • Ahl Goy P., Signer H., Reist R., Aichholz R., Blum W., Schmidt E. & Kessmann H. (1993) Accumulation of scopoletin is associated with the high disease resistance of the hybrid Nicotiana glutinosa x Nicotiana debneyi. Planta 191, 200206.
  • Bailey J.A., Burden R.S. & Vincent G.G. (1975) Capsidiol: an antifungal compound produced in Nicotiana tabacum and Nicotiana clevelandii following infection with tobacco necrosis virus. Phytochemistry 14, 597.
  • Baumert A., Mock H.-P., Schmidt J., Herbers K., Sonnewald U. & Strack D. (2001) Patterns of phenylpropanoids in non-inoculated and potato virus Y-inoculated leaves of transgenic tobacco plants expressing yeast-derived invertase. Phytochemistry 56, 535541.
  • Bradford M.M. (1976) Rapid and quantitative method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72, 248252.
  • Bryant J.P., Chapin F.S. III, Reichardt P. & Clausen T. (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357368.
  • Campbell M.M. & Ellis B.E. (1992) Fungal elicitor mediated responses in pine cell cultures: Induction of phenylpropanoid metabolism. Planta 196, 409417.
  • Chong J., Baltz R., Schmitt C., Beffa R., Fritig B. & Saindrenan P. (2002) Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glycoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell 14, 115.
  • Delaney T.P., Ukness S., Vernooij B., Friedrich L., Weymann K., Negrotto N., Gaffney T., Gut-Rella M., Kessmann H., Ward E. & Ryals J. (1994) A central role of salicylic acid in plant disease resistance. Science 266, 12471250.
  • Dixon R.A. & Paiva N.L. (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7, 10851097.
  • El Modafar C., Clerivet A., Fleuriet A. & Macheix J.J. (1993) Inoculation of Platanus acerifolia with Ceratocystis fimbriata F. sp. platani induces scopoletin and umbelliferone accumulation. Phytochemistry 34, 12711276.
  • Estiarte M., Penuelas J., Kimball B.A., Hendrix D.L., Pinter P.J. Jr, Wall G.W., La Morte R.L. & Hunsacker D.J. (1999) Free-air CO2-enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiologica Plantarum 105, 423433.
  • Felton G.W., Korth K.L., Bi J.L., Wesley S.V., Huhman D.V., Mathews M.C., Murphy J.B., Lamb C. & Dixon R.A. (1999) Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Current Biology 9, 317320.
  • Fischer C., Van Doorne H., Lim M.I. & Svendsen A.B. (1976) Bacteriostatic activity of some coumarin derivatives. Phytochemistry 15, 10781079.
  • Fritig B. & Hirth L. (1971) Biosynthesis of phenylpropanoids and coumarins in TMV-infected tobacco leaves and tobacco cultures. Acta Phytopathologica, Academiae Scientiarum Hungaricae 6, 2129.
  • Geiger M., Haake V., Ludewig F., Sonnewald U. & Stitt M. (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant, Cell and Environment 22, 11771199.
  • Gifford R.M., Barret D.J. & Lutze J.L. (2000) The effect of elevated [CO2] on the C : N and C : P mass ratios of plant tissues. Plant and Soil 224, 114.
  • Gleadow R.M., Foley W.J. & Woodrow I.E. (1998) Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F. Muell. Plant, Cell and Environment 21, 1222.
  • Guedes M.E.M., Kuc J., Hammerschmidt R. & Bostock R. (1982) Accumulation of six sesquiterpenoid phytoalexins in tobacco leaves infiltrated with Pseudomonas lachrymans. Phytochemistry 21, 29872988.
  • Hahlbrock K. & Scheel D. (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 40, 347369.
  • Hamilton J.G., Zangerl A.R., DeLucia E.H. & Berenbaum M.R. (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecology Letters 4, 8695.
  • Hartley S.E., Jones C.G., Couper G.C. & Jones T.H. (2000) Biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Global Change Biology 6, 497505.
  • Herbers K., Meuwly P., Frommer W.B., Metraux J.P. & Sonnewald U. (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8, 793803.
  • Herms D.A. & Mattson W.J. (1992) The dilemma of plants: To grow or defend. The Quarterly Review of Biology, The University of Chicago 67, 283335
  • Karowe D.N., Seimens D.H. & Mitchell-Olds T. (1997) Species-specific responses of glucosinolate content to elevated atmospheric CO2. Journal of Chemical Ecology 23, 25692582.
  • Kauffmann S., Legrand M., Geoffroy P. & Fritig B. (1987) Biological function of pathogenesis-related proteins: Four PR proteins of tobacco have a β-1,3-glucanase activity. EMBO Journal 6, 32093212.
  • Kuc J. & Rush J.S. (1985) Phytoalexins. Archives Biochemistry and Biophysics 236, 455472.
  • Laemmli U.K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680685.
  • Lambers H. (1993) Rising CO2 secondary plant metabolism, plant herbivore interactions and litter decomposition. Vegetatio 104/105, 263271.
  • Lindroth R.L., Roth S. & Nordheim E.V. (2001) Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia 126, 371379.
  • Long S.P., Ainsworth E.A., Rogers A. & Ort D.R. (2004) Rising atmospheric carbon dioxid: plants face the future. Annual Review of Plant Biology 55, 591628.
  • Ludewig F., Sonnewald U., Kauder F., Heinecke D., Geiger M., Stitt M., Müller-Röber B.T., Gillissen B., Kühn C. & Frommer W.B. (1998) The role of transient starch in acclimation to elevated CO2. FEBS Letters 429, 147151.
  • Maher E.A., Bate N.J., Ni W., Elkind Y., Dixon R.A. & Lamb C.J. (1994) Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proceedings of the National Academy of Sciences of the USA 91, 78027806.
  • Margna U., Margna E. & Vainjärv T. (1989) Influence of nitrogen nutrition on the utilisation of 1-phenylalanine for building flavonoids in buckwheat seedling tissues. Journal of Plant Physiology 134, 697702.
  • Matros M. & Mock H.-P. (2004) Ectopic expression of a UDP-glucose: phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with potato virus Y. Plant and Cell Physiology 45, 11851193.
  • Matt P., Krapp A., Haake V., Mock H.-P. & Stitt M. (2002) Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant Journal 30, 663677.
  • Mauch-Mani B. & Slusarenko A.J. (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8, 203212.
  • Mock H.-P., Heller W., Molina A., Neubohn B., Sandermann H. Jr. & Grimm B. (1999) Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to TMV. Journal of Biological Chemistry 274, 42314238.
  • Pallas J.A., Paiva N.L., Lamb C.J. & Dixon R.A. (1996) Tobacco plants epigenetically suppressed in phenylalanine ammonia lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant Journal 10, 281293.
  • Paul M.J. & Foyer C.H. (2001) Sink regulation of photosynthesis. Journal of Experimental Botany 52, 13831400.
  • Penuelas J. & Estiarte M. (1998) Can elevated CO2 affect secondary metabolism and ecosystem function? Tree 13, 2024.
  • Penuelas J., Estiarte M. & Llusia J. (1997) Carbon based secondary compounds at elevated CO2. Photosynthetica 33, 313316.
  • Petersen M., Strack D. & Matern U. (1999) Biosynthesis of phenylpropanoids and related compounds. In 2. Biochemistry of Plant Secondary Metabolism (ed. M.Wink), Annual Plant Reviews, pp. 151221. Academic Press, Sheffield, UK.
  • Poorter H., Berkel V., Baxter R., Den Hertog J., Dijkstra P., Gifford R.M., Giffin K.L., Rounet C., Roy J. & Wong S.C. (1997) The effect of elevated carbon dioxide on the chemical composition and construction costs of leaves of 27 C3 species. Plant, Cell and Environment 20, 472482.
  • Poorter H. & Navas M.-L. (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157, 175198.
  • Rufty T.W. Jr, Jackson D.M., Severson R.F., Lam J.J. & Snook M.E. (1989) Alterations in growth and chemical constituents of tobacco in response to CO2 enrichment. Journal of Agricultural and Food Chemistry 37, 552555.
  • Saitoh F., Noma M. & Kawashima N. (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24, 477480.
  • Sanchez E., Soto J.M., Garcia P.C., Lopez-Lefebre L.R., Rivero R.M., Ruiz J.M. & Romero L. (2000) Phenolic and oxidative metabolism as bioindicators of nitrogen deficiency in french bean plants (Phaseolus vulgaris L. cv. Strike). Plant Biology 2, 272277.
  • Stamp N. (2003) Theory of plant defensive level: example of process and pitfalls in development of ecological theory. Oikos 102, 672678.
  • Stitt M. & Krapp A. (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment 22, 583621.
  • Stoessl A., Stothers J.B. & Ward E.W.B. (1976) Sesquiterpenoid stress compounds of the Solanaceae. Phytochemistry 15, 855872.
  • Tal B. & Robeson D.J. (1986) The induction by fungal inoculation, of ayapin and scopoletin biosynthesis in Helianthus annuus. Phytochemistry 25, 7779.
  • Tanguy J. & Martin C. (1972) Phenolic compounds and the hypersensitivity reaction in Nicotiana tabacum infected with tobacco mosaic virus. Phytochemistry 11, 1928.
  • Valle T., López J.L., Hernández J.M. & Corchete P. (1997) Antifungal activity of scopoletin and its differential accumulation in Ulmus pumila and Ulmus campestris cell suspension cultures infected with Ophiostoma ulmi spores. Plant Science 125, 97101.
  • Van Etten H.D., Matthews D.E. & Matthews P.S. (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Annual Review of Phytopathology 27, 143164.