SEARCH

SEARCH BY CITATION

REFERENCES

  • Ackerson R.C. (1981) Osmoregulation in cotton in response to water stress. II. Leaf carbohydrate status in relation to osmotic adjustment. Plant Physiology 67, 489493.
  • Albrecht T., Greve B., Pusch K., Kossmann J., Buchner P., Wobus U. & Steup M. (1998) Homodimers and heterodimers of Pho1-type phosphorylase isoforms in Solanum tuberosum L. as revealed by sequence-specific antibodies. European Journal of Biochemistry 251, 343352.
  • Albrecht T., Koch A., Lode A., Greve B., Schneider-Mergener J. & Steup M. (2001) Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: expression analysis and immunochemical characterization. Planta 213, 602613.
  • An H.L., Roussot C., Suarez-Lopez P., et al. (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 36153626.
  • Ball S.G. & Morell M.K. (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology 54, 207233.
  • Bateman A., Coin L., Durbin R., et al. (2004) The Pfam protein families database. Nucleic Acids Research 32, D138D141.
  • Baunsgaard L., Lutken H., Mikkelsen R., Glaring M.A., Pham T.T. & Blennow A. (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis. Plant Journal 41, 595605.
  • Beers E.P., Duke S.H. & Henson C.A. (1990) Partial characterization and subcellular localization of 3 α-glucosidase isoforms in pea (Pisum sativum L) seedlings. Plant Physiology 94, 738744.
  • Behnke H.D. (2002) Sieve-element plastids and evolution of monocotyledons, with emphasis on melanthiaceae sensu lato and aristolochiaceae-asaroideae, a putative dicotyledon sister group. Botanical Review 68, 524544.
  • Boos W. & Shuman H. (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiology and Molecular Biology Reviews 62, 204229.
  • Bordat P., Lerbret A., Demaret J.P., Affouard F. & Descamps M. (2004) Comparative study of trehalose, sucrose and maltose in water solutions by molecular modelling. Europhysics Letters 65, 4147.
  • Caspar T., Huber S.C. & Somerville C. (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L) deficient in chloroplast phosphoglucomutase activity. Plant Physiology 79, 1117.
  • Caspar T., Lin T.P., Kakefuda G., Benbow L., Preiss J. & Somerville C. (1991) Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiology 95, 11811188.
  • Chatterton N.J. & Silvius J.E. (1979) Photosynthate partitioning into starch in soybean leaves. 1. Effects of photoperiod versus photosynthetic period duration. Plant Physiology 64, 749753.
  • Chatterton N.J. & Silvius J.E. (1980) Photosynthate partitioning into leaf starch as affected by daily photosynthetic period duration in 6 species. Physiologia Plantarum 49, 141144.
  • Chia T., Thorneycroft D., Chapple A., Messerli G., Chen J., Zeeman S.C., Smith S.M. & Smith A.M. (2004) A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant Journal 37, 853863.
  • Critchley J.H., Zeeman S.C., Takaha T., Smith A.M. & Smith S.M. (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant Journal 26, 89100.
  • Datta R., Selvi M.T., Seetharama N. & Sharma R. (1999) Stress-mediated enhancement of β-amylase activity in pearl millet and maize leaves is dependent on light. Journal of Plant Physiology 154, 657664.
  • Delatte T., Trevisan M., Parker M.L. & Zeeman S.C. (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant Journal 41, 815830.
  • Dreier W., Schnarrenberger C. & Borner T. (1995) Light-dependent and stress-dependent enhancement of amylolytic activities in white and green barley leaves –β-amylases are stress-induced proteins. Journal of Plant Physiology 145, 342348.
  • Duwenig E., Steup M., Willmitzer L. & Kossmann J. (1997) Antisense inhibition of cytosolic phosphorylase in potato plants (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism. Plant Journal 12, 323333.
  • Fettke J., Eckermann N., Poeste S., Pauly M. & Steup M. (2004) The glycan substrate of the cytosolic (Pho 2) phosphorylase isozyme from Pisum sativum L. identification, linkage analysis and subcellular localization. Plant Journal 39, 933946.
  • Fettke J., Eckermann N., Tiessen A., Geigenberger P. & Steup M. (2005a) Identification, subcellular localization and biochemical characterization of water-soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L: distinct SHG reside in the cytosol and in the apoplast. Plant Journal 43, 568585.
  • Fettke J., Poeste S., Eckermann N., Tiessen A., Pauly M., Geigenberger P. & Steup M. (2005b) Analysis of cytosolic heteroglycans from leaves of transgenic potato (Solanum tuberosum L.) plants that under- or overexpress the Pho 2 phosphorylase isozyme. Plant and Cell Physiology DOI: 10.1093 pcp/pci214
  • Gibon Y., Blasing O.E., Palacios-Rojas N., Pankovic D., Hendriks J.H.M., Fisahn J., Hohne M., Gunther M. & Stitt M. (2004) Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant Journal 39, 847862.
  • Harmer S.L., Hogenesch J.B., Straume M., Chang H.-S., Han B., Zhu T., Wang X., Kreps J.A. & Kay S.A. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 21102113.
  • Hattenbach A., Müller-Röber B., Nast G. & Heineke D. (1997) Antisense repression of both ADP-glucose pyrophosphorylase and triose phosphate translocator modifies carbohydrate partitioning in potato leaves. Plant Physiology 115, 471475.
  • Heineke D., Kruse A., Flügge U.I., Frommer W.B., Riesmeier J.W., Willmitzer L. & Heldt H.W. (1994) Effect of antisense repression of the chloroplast triose-phosphate translocator on photosynthetic metabolism in transgenic potato plants. Planta 193, 174180.
  • Heldt H.W., Chon C.J., Maronde D., Herold A., Stankovic Z.S., Walker D.A., Kraminer A., Kirk M.R. & Heber U. (1977) Role of orthophosphate and other factors in regulation of starch formation in leaves and isolated-chloroplasts. Plant Physiology 59, 11461155.
  • Hendrix D.L. & Grange R.I. (1991) Carbon partitioning and export from mature cotton leaves. Plant Physiology 95, 228233.
  • Hendrix D.L. & Huber S.C. (1986) Diurnal fluctuations in cotton leaf carbon export, carbohydrate content, and sucrose synthesizing enzymes. Plant Physiology 81, 584586.
  • Herold A., Leegood R.C., McNeil P.H. & Robinson S.P. (1981) Accumulation of maltose during photosynthesis in protoplasts isolated from spinach leaves treated with mannose. Plant Physiology 67, 8588.
  • Herzog B., Stitt M. & Heldt H.W. (1984) Control of photosynthetic sucrose synthesis by fructose 2,6-bisphosphate. III. Properties of the cytosolic fructose 1,6-bisphosphatase. Plant Physiology 75, 561565.
  • Huber S.C. & Huber J.L. (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 431444.
  • Hussain H., Mant A., Seale R., et al. (2003) Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15, 133149.
  • Imaizumi T., Tran H.G., Swartz T.E., Briggs W.R. & Kay S.A. (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302306.
  • Imaizumi T., Schultz T.F., Harmon F.G., Ho L.A. & Kay S.A. (2005) FKF1 F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309, 293297.
  • Kakefuda G., Duke S.H. & Hostak M.S. (1986) Chloroplast and extrachloroplastic starch-degrading enzymes in Pisum sativum L. Planta 168, 175182.
  • Kammerer B., Fischer K., Hilpert B., Schubert S., Gutensohn M., Weber A. & Flügge U.I. (1998) Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate phosphate antiporter. Plant Cell 10, 105117.
  • Kaplan F. & Guy C.L. (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiology 135, 16741684.
  • Kofler H., Hausler R.E., Schulz B., Groner F., Flügge U.I. & Weber A. (2000) Molecular characterisation of a new mutant allele of the plastid phosphoglucomutase in Arabidopsis, and complementation of the mutant with the wild-type cDNA. Molecular and General Genetics 263, 978986.
  • Kötting O., Pusch K., Tiessen A., Geigenberger P., Steup M. & Ritte G. (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiology 137, 242252.
  • Kruger N.J. & Ap Rees T. (1983) Maltose metabolism by pea chloroplasts. Planta 158, 179184.
  • Laby R.J., Kim D. & Gibson S.I. (2001) The ram1 mutant of Arabidopsis exhibits severely decreased β-amylase activity. Plant Physiology 127, 17981807.
  • Lao N.T., Schoneveld O., Mould R.M., Hibberd J.M., Gray J.C. & Kavanagh T.A. (1999) An Arabidopsis gene encoding a chloroplast-targeted β-amylase. Plant Journal 20, 519527.
  • Lerbret A., Bordat P., Affouard F., Guinet Y., Hedoux A., Paccou L., Prevost D. & Descamps M. (2005) Influence of homologous disaccharides on the hydrogen-bond network of water: complementary Raman scattering experiments and molecular dynamics simulations. Carbohydrate Research 340, 881887.
  • Levi C. & Gibbs M. (1976) Starch degradation in isolated spinach chloroplasts. Plant Physiology 57, 933935.
  • Lin T.P., Caspar T., Somerville C. & Preiss J. (1988a) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L) Heynh lacking ADPglucose pyrophosphorylase activity. Plant Physiology 86, 11311135.
  • Lin T.P., Caspar T., Somerville C.R. & Preiss J. (1988b) A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the 2 subunits of the enzyme. Plant Physiology 88, 11751181.
  • Lin T.P., Spilatro S.R. & Preiss J. (1988c) Subcellular localization and characterization of amylases in Arabidopsis leaf. Plant Physiology 86, 251259.
  • Lloyd J.R., Blennow A., Burhenne K. & Kossmann J. (2004) Repression of a novel isoform of disproportionating enzyme (stDPE2) in potato leads to inhibition of starch degradation in leaves but not tubers stored at low temperature. Plant Physiology 134, 13471354.
  • Lloyd J.R., Kossmann J. & Ritte G. (2005) Leaf starch degradation comes out of the shadows. Trends in Plant Science 10, 130137.
  • Lorberth R., Ritte G., Willmitzer L. & Kossmann J. (1998) Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nature Biotechnology 16, 473477.
  • Lu Y. & Sharkey T.D. (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218, 466473.
  • Lu Y., Gehan J.P. & Sharkey T.D. (2004) Daylength and circadian effects on starch degradation and maltose metabolism. Paper presented at the Photosynthesis: Fundamental Aspects to Global Perspectives, the. Proceedings of the 13th International Congress of Photosynthesis, Montréal, Quebec, Canada. Allen Press, Lawrence, KS, pp. 711–713.
  • Lu Y., Gehan J.P. & Sharkey T.D. (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiology 138, 22802291.
  • Matt P., Schurr U., Klein D., Krapp A. & Stitt M. (1998) Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis. Planta 207, 2741.
  • McClung C.R. (2001) Circadian rhythms in plants. Annual Review of Plant Physiology and Plant Molecular Biology 52, 139162.
  • Mikkelsen R., Mutenda K.E., Mant A., Schurmann P. & Blennow A. (2005) α-Glucan, water dikinase (GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proceedings of the National Academy of Sciences of the USA 102, 17851790.
  • Monroe J.D., Salminen M.D. & Preiss J. (1991) Nucleotide sequence of a cDNA clone encoding a β-amylase from Arabidopsis thaliana. Plant Physiology 97, 15991601.
  • Moore B., Zhou L., Rolland F., Hall Q., Cheng W.H., Liu Y.X., Hwang I., Jones T. & Sheen J. (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300, 332336.
  • Mori H., Tanizawa K. & Fukui T. (1991) Potato tuber type H phosphorylase isozyme – molecular cloning, nucleotide sequence, and expression of a full-length cDNA in Escherichia coli. Journal of Biological Chemistry 266, 18 44618 453.
  • Neuhaus H.E. & Schulte N. (1996) Starch degradation in chloroplasts isolated from C-3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L. Biochemical Journal 318, 945953.
  • Nielsen T.H., Deiting U. & Stitt M. (1997) A β-amylase in potato tubers is induced by storage at low temperature. Plant Physiology 113, 503510.
  • Niewiadomski P., Knappe S., Geimer S., Fischer K., Schulz B., Unte U.S., Rosso M.G., Ache P., Flügge U.I. & Schneider A. (2005) The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 17, 760775.
  • Niittylä T., Messerli G., Trevisan M., Chen J., Smith A.M. & Zeeman S.C. (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303, 8789.
  • Okita T.W., Greenberg E., Kuhn D.N. & Preiss J. (1979) Subcellular localization of the starch degradative and biosynthetic enzymes of spinach leaves. Plant Physiology 64, 187192.
  • Palevitz B.A. & Newcomb E.H. (1970) A study of sieve element starch using sequential enzymatic digestion and electron microscopy. Journal of Cell Biology 45, 383&;.
  • Peavey D.G., Steup M. & Gibbs M. (1977) Characterization of starch breakdown in intact spinach chloroplast. Plant Physiology 60, 305308.
  • Preiss J., Okita T.W. & Greenberg E. (1980) Characterization of the spinach leaf phosphorylases. Plant Physiology 66, 864869.
  • Ritte G. & Raschke K. (2003) Metabolite export of isolated guard cell chloroplasts of Vicia faba. New Phytologist 159, 195202.
  • Ritte G., Lloyd J.R., Eckermann N., Rottmann A., Kossmann J. & Steup M. (2002) The starch-related R1 protein is an α-glucan, water dikinase. Proceedings of the National Academy of Sciences of the USA 99, 71667171.
  • Ritte G., Scharf A., Eckermann N., Haebel S. & Steup M. (2004) Phosphorylation of transitory starch is increased during degradation. Plant Physiology 135, 20682077.
  • Rost S., Frank C. & Beck E. (1996) The chloroplast envelope is permeable for maltose but not for maltodextrins. Biochimica et Biophysica Acta 1291, 221227.
  • Schäfer G., Heber U. & Heldt H.W. (1977) Glucose transport into spinach chloroplasts. Plant Physiology 60, 286289.
  • Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M. & Wisman E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13, 113123.
  • Scheidig A., Frohlich A., Schulze S., Lloyd J.R. & Kossmann J. (2002) Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant Journal 30, 581591.
  • Schleucher J., Vanderveer P.J. & Sharkey T.D. (1998) Export of carbon from chloroplasts at night. Plant Physiology 118, 14391445.
  • Schneider A., Hausler R.E., Kolukisaoglu U., Kunze R., Van Der Graaff E., Schwacke R., Catoni E., Desimone M. & Flügge U.I. (2002) An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Plant Journal 32, 685699.
  • Schultz T.F. & Kay S.A. (2003) Circadian clocks in daily and seasonal control of development. Science 301, 326328.
  • Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., Hayashizaki Y. & Shinozaki K. (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 6172.
  • Servaites J.C. & Geiger D.R. (2002) Kinetic characteristics of chloroplast glucose transport. Journal of Experimental Botany 53, 15811591.
  • Sharkey T.D. & Vanderveer P.J. (1989) Stromal phosphate concentration is low during feedback limited photosynthesis. Plant Physiology 91, 679684.
  • Sharkey T.D. & Vassey T.L. (1989) Low oxygen inhibition of photosynthesis is caused by inhibition of starch synthesis. Plant Physiology 90, 385387.
  • Sharkey T.D., Savitch L.V., Vanderveer P.J. & Micallef B.J. (1992) Carbon partitioning in a Flaveria linearis mutant with reduced cytosolic fructose bisphosphatase. Plant Physiology 100, 210215.
  • Sharkey T.D., Laporte M., Lu Y., Weise S. & Weber A.P.M. (2004a) Engineering plants for elevated CO2: a relationship between starch degradation and sugar sensing. Plant Biology 6, 280288.
  • Sharkey T.D., Terashima I., Standish A.J. & Weise S.E. (2004b) CO2 processing from the chloroplast to the leaf. In Photosynthetic Adaptation from the Chloroplast to the Landscape (eds W.K.Smith, T.C.Vogelmann & C.Critchley), pp. 171206. Springer, New York, USA.
  • Sicher R.C. & Kremer D.E. (1984) Changes of sucrose-phosphate synthase activity in barley primary leaves during light dark transitions. Plant Physiology 76, 910912.
  • Smith S.M., Fulton D.C., Chia T., Thorneycroft D., Chapple A., Dunstan H., Hylton C., Zeeman S.C. & Smith A.M. (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiology 136, 26872699.
  • Smith A.M., Zeeman S.C. & Smith S.M. (2005) Starch degradation. Annual Review of Plant Biology 56, 7398.
  • Sonnewald U., Basner A., Greve B. & Steup M. (1995) A 2nd 1-type isozyme of potato glucan phosphorylase – cloning, antisense inhibition and expression analysis. Plant Molecular Biology 27, 567576.
  • Steup M. & Latzko E. (1979) Intracellular localization of phosphorylases in spinach and pea leaves. Planta 145, 6975.
  • Steup M., Schachtele C. & Latzko E. (1980) Purification of a non-chloroplastic α-glucan phosphorylase from spinach leaves. Planta 148, 168173.
  • Stitt M. & Ap Rees T. (1980) Carbohydrate breakdown by chloroplasts of Pisum sativum. Biochimica et Biophysica Acta 627, 131143.
  • Stitt M. & Heldt H.W. (1981a) Physiological rates of starch breakdown in isolated intact spinach chloroplasts. Plant Physiology 68, 755761.
  • Stitt M. & Heldt H.W. (1981b) Simultaneous synthesis and degradation of starch in spinach chloroplasts in the light. Biochimica et Biophysica Acta 638, 111.
  • Stitt M., Bulpin P.V. & Rees T.A. (1978) Pathway of starch breakdown in photosynthetic tissues of Pisum sativum. Biochimica et Biophysica Acta 544, 200214.
  • Stitt M., Wirtz W., Gerhardt R., Heldt H.W., Spencer C., Walker D. & Foyer C. (1985) A comparative study of metabolite levels in plant leaf material in the dark. Planta 166, 354364.
  • Strand Å., Hurry V., Henkes S., Huner N., Gustafsson P., Gardeström P. & Stitt M. (1999) Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiology 119, 13871397.
  • Szmelcman S., Schwartz M., Silhavy T.J. & Boos W. (1976) Maltose transport in Escherichia coli K12 – comparison of transport kinetics in wild-type and λ-resistant mutants with dissociation constants of maltose-binding protein as measured by fluorescence quenching. European Journal of Biochemistry 65, 1319.
  • Takaha T. & Smith S.M. (1999) The functions of 4-α-glucanotransferases and their use for the production of cyclic glucans. Biotechnology and Genetic Engineering Reviews 16, 257280
  • Takaha T., Yanase M., Okada S. & Smith S.M. (1993) Disproportionating enzyme (4-α-glucanotransferase – Ec 2.4.1.25) of potato – purification, molecular cloning, and potential role in starch metabolism. Journal of Biological Chemistry 268, 13911396.
  • Vassey T.L. & Sharkey T.D. (1989) Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity. Plant Physiology 89, 10661070.
  • Venema J.H., Posthumus F., De Vries M. & Van Hasselt P.R. (1999) Differential response of domestic and wild Lycopersicon species to chilling under low light: growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiologia Plantarum 105, 8188.
  • Wang Z.Y., Zheng F.Q., Shen G.Z., Gao J.P., Snustad D.P., Li M.G., Zhang J.L. & Hong M.M. (1995) The amylose content in rice endosperm Is related to the posttranscriptional regulation of the waxy gene. Plant Journal 7, 613622.
  • Weber A., Servaites J.C., Geiger D.R., Kofler H., Hille D., Groner F., Hebbeker U. & Flügge U.I. (2000) Identification, purification, and molecular cloning of a putative plastidic glucose translocator. Plant Cell 12, 787802.
  • Weise S.E. & Sharkey T.D. (2004) Engergetics of carbon export from the chloroplast at night. Paper presented at the Photosynthesis: Fundamental Aspects to Global Perspectives, the. Proceedings of the 13th International Congress on Photosynthesis, Montréal, Quebec, Canada. Allen Press, Lawrence, KS, pp. 816–818.
  • Wiese A., Groner F., Sonnewald U., Deppner H., Lerchl J., Hebbeker U., Flügge U.I. & Weber A. (1999) Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Letters 461, 1318.
  • Weise S.E., Weber A.P.M. & Sharkey T.D. (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218, 474482.
  • Weise S.E., Kim K.S., Stewart R.P. & Sharkey T.D. (2005) β-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiology 137, 756761.
  • Wu H. & Zheng X.F. (2003) Ultrastructural studies on the sieve elements in root protophleom of Arabidopsis thaliana. Acta Botanica Sinica 45, 322330.
  • Yanagisawa S., Yoo S.D. & Sheen J. (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425, 521525.
  • Yang Y. & Steup M. (1990) Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme.1. Isolation and characterization. Plant Physiology 94, 960969.
  • Yano R., Nakamura M., Yoneyama T. & Nishida I. (2005) Starch-related α-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiology 138, 837846.
  • Yanovsky M.J. & Kay S.A. (2003) Living by the calendar: how plants know when to flower. Nature Reviews Molecular Cell Biology 4, 265275.
  • Yu T.S., Lue W.L., Wang S.M. & Chen J.C. (2000) Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiology 123, 319325.
  • Yu T.S., Kofler H., Hausler R.E., et al. (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13, 19071918.
  • Yu T.S., Zeeman S.C., Thorneycroft D., et al. (2005) α-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. Journal of Biological Chemistry 280, 97739779.
  • Zeeman S.C., Northrop F., Smith A.M. & Ap Rees T. (1998a) A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme. Plant Journal 15, 357365.
  • Zeeman S.C., Umemoto T., Lue W.L., Au-Yeung P., Martin C., Smith A.M. & Chen J. (1998b) A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10, 16991711.
  • Zeeman S.C., Thorneycroft D., Schupp N., Chapple A., Weck M., Dunstan H., Haldimann P., Bechtold N., Smith A.M. & Smith S.M. (2004) Plastidial α-glucan phosphorylase is not required for starch degradation in Arabidopsis Leaves but has a role in the tolerance of abiotic stress. Plant Physiology 135, 849858.
  • Zhang X.L., Myers A.M. & James M.G. (2005) Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiology 138, 663674.
  • Zrenner R., Krause K.P., Apel P. & Sonnewald U. (1996) Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant Journal 9, 671681.