SEARCH

SEARCH BY CITATION

REFERENCES

  • Alabadi D., Oyama T., Yanovsky M.J., Harmon F.G., Mas P. & Kay S.A. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880883.
  • Alabadi D., Yanovsky M.J., Mas P., Harmer S.L. & Kay S.A. (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Current Biology 12, 757761.
  • Alabadi D., Gil J., Blazquez M.A. & Garcia-Martinez J.L. (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiology 134, 10501057.
  • Araki T. & Komeda Y. (1993) Flowering in darkness in Arabidopsis thaliana. Plant Journal 4, 801811.
  • Asami T., Min Y.K., Nagata N., Yamagishi K., Takatsuto S., Fujioka S., Murofushi N., Yamaguchi I. & Yoshida S. (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiology 123, 93100.
  • Azpiroz R., Wu Y., LoCascio J.C. & Feldmann K.A. (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10, 219230.
  • Barlier I., Kowalczyk M., Marchant A., Ljung K., Bhalerao R., Bennett M., Sandberg G. & Bellini C. (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proceedings of the National Academy of Sciences of the USA 97, 1481914824.
  • Bauer D., Viczian A., Kircher S., et al. (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of PHYTOCHROME INTERACTING FACTOR 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16, 14331445.
  • Bleecker A.B., Estelle M.A., Somerville C. & Kende H. (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 10861089.
  • Boerjan W., Cervera M.T., Delarue M., Beeckman T., Dewitte W., Bellini C., Caboche M., Van Onckelen H., Van Montagu M. & Inze D. (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7, 14051419.
  • Celenza J.L. Jr, Grisafi P.L. & Fink G.R. (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes & Development 9, 21312142.
  • Chen M., Chory J. & Fankhauser C. (2004) Light signal transduction in higher plants. Annual Review of Genetics 38, 87117.
  • Cluis C.P., Mouchel C.F. & Hardtke C.S. (2004) The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant Journal 38, 332347.
  • Collett C.E., Harberd N.P. & Leyser O. (2000) Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiology 124, 553562.
  • Colon-Carmona A., Chen D.L., Yeh K.C. & Abel S. (2000) Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiology 124, 17281738.
  • Covington M.F., Panda S., Liu X.L., Strayer C.A., Wagner D.R. & Kay S.A. (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13, 13051315.
  • Cowling R. & Harberd N. (1999) Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. Journal of Botany Experiment 50, 13511357.
  • Daniel X., Sugano S. & Tobin E.M. (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proceedings of the National Academy of Sciences of the USA 101, 32923297.
  • Darwin C. (1881) The Power of Movement in Plants. Appleton, New York, USA.
  • De Grauwe L., Vandenbussche F., Tietz O., Palme K. & Van Der Straeten D. (2005) Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant & Cell Physiology 46, 827836.
  • Desnos T., Orbovic V., Bellini C., Kronenberger J., Caboche M., Traas J. & Hofte H. (1996) Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark and light-grown Arabidopsis seedlings. Development 122, 683693.
  • Dharmasiri N., Dharmasiri S. & Estelle M. (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441445.
  • Dodd A.N., Salathia N., Hall A., Kevei E., Toth R., Nagy F., Hibberd J.M., Millar A.J. & Webb A.A.R. (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630633.
  • Dowson-Day M.J. & Millar A.J. (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant Journal 17, 6371.
  • Doyle M.R., Davis S.J., Bastow R.M., McWatters H.G., Kozma-Bognar L., Nagy F., Millar A.J. & Amasino R.M. (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 7477.
  • Duek P.D. & Fankhauser C. (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends in Plant Science 10, 5154.
  • Duek P.D., Elmer M.V., Van Oosten V.R. & Fankhauser C. (2004) The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Current Biology 14, 22962301.
  • Fagard M., Desnos T., Desprez T., Goubet F., Refregier G., Mouille G., McCann M., Rayon C., Vernhettes S. & Hofte H. (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12, 24092424.
  • Fleet C.M., Sun T.-P. (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology 8, 7785.
  • Folta K.M., Pontin M.A., Karlin-Neumann G., Bottini R. & Spalding E.P. (2003) Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant Journal 36, 203214.
  • Fowler S., Lee K., Onouchi H., Samach A., Richardson K., Morris B., Coupland G. & Putterill J. (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO Journal 18, 46794688.
  • Friml J., Wisniewska J., Benkova E., Mendgen K. & Palme K. (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806809.
  • Fu X. & Harberd N.P. (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740743.
  • Fujimori T., Yamashino T., Kato T. & Mizuno T. (2004) Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant & Cell Physiology 45, 10781086.
  • Geisler M., Kolukisaoglu H.U., Bouchard R., et al. (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Molecular Biological of the Cell 14, 42384249.
  • Van Der Graaff E., Boot K., Granbom R., Sandberg G. & Hooykaas P.J.J. (2003) Increased endogenous auxin production in Arabidopsis thaliana causes both earlier described and novel auxin-related phenotypes. Journal of Plant Growth Regulation 22, 240252.
  • Gray W.M., Ostin A., Sandberg G., Romano C.P. & Estelle M. (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the USA 95, 71977202.
  • Green R.M., Tingay S., Wang Z.-Y. & Tobin E.M. (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiology 129, 576584.
  • Guo H. & Ecker J.R. (2004) The ethylene signaling pathway: new insights. Current Opinion in Plant Biology 7, 4049.
  • Halliday K.J. (2004) Plant hormones: the interplay of brassinosteroids and auxin. Current Biology 14, R1008R1010.
  • Halliday K.J. & Fankhauser C. (2003) Phytochrome-hormonal signalling networks. New Phytology 157, 449463.
  • Han L., Mason M., Risseeuw E.P., Crosby W.L. & Somers D.E. (2004) Formation of an SCFZTL complex is required for proper regulation of circadian timing. Plant Journal 40, 291301.
  • Harmer S.L., Hogenesch J.B., Straume M., Chang H.S., Han B., Zhu T., Wang X., Kreps J.A. & Kay S.A. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 21102113.
  • Harmer S.L. & Kay S.A. (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17, 19261940.
  • Hicks K.A., Millar A.J., Carre I.A., Somers D.E., Straume M., Meeks-Wagner D.R. & Kay S.A. (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274, 790792.
  • Hicks K.A., Albertson T.M. & Wagner D.R. (2001) EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13, 12811292.
  • Hisamatsu T., King R.W., Helliwell C.A. & Koshioka M. (2005) The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiology 138, 11061116.
  • Hoecker U., Toledo-Ortiz G., Bender J. & Quail P.H. (2004) The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta 219, 195200.
  • Holm M., Ma L.G., Qu L.J. & Deng X.W. (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes & Development 16, 12471259.
  • Huq E., Tepperman J.M. & Quail P.H. (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences USA 97, 97899794.
  • Huq E. & Quail P.H. (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO Journal 21, 24412450.
  • Imaizumi T., Tran H.G., Swartz T.E., Briggs W.R. & Kay S.A. (2003) FKF1 is essential for photoperiodic-specific light signaling in Arabidopsis. Nature 426, 302306.
  • Jang I.C., Yang J.Y., Seo H.S. & Chua N.H. (2005) HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes & Development 19, 593602.
  • Jarillo J.A., Capel J., Tang R.H., Yang H.Q., Alonso J.M., Ecker J.R. & Cashmore A.R. (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410, 487490.
  • Jensen P.J., Hangarter R.P. & Estelle M. (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiology 116, 455462.
  • Jouve L., Gaspar T., Kevers C., Greppin H. & Degli Agosti R. (1999) Involvement of indole-3-acetic acid in the circadian growth of the first internode of Arabidopsis. Planta 209, 136142.
  • Kang J.G., Yun J., Kim D.H., et al. (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105, 625636.
  • Kepinski S. & Leyser O. (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446451.
  • Khanna R., Kikis E.A. & Quail P.H. (2003) EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiology 133, 15301538.
  • Kim W.-Y., Geng R. & Somers D.E. (2003) Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proceedings of the National Academy of Sciences of the USA 100, 49334938.
  • Kim J.Y., Song H.R., Taylor B.L. & Carre I.A. (2003) Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO Journal 22, 935944.
  • King J.J., Stimart D.P., Fisher R.H. & Bleecker A.B. (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7, 20232037.
  • Kircher S., Gil P., Kozma-Bognar L., Fejes E., Speth V., Husselstein-Muller T., Bauer D., Adam E., Schafer E. & Nagy F. (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14, 15411555.
  • Kiyosue T. & Wada M. (2000) LKPI (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. Plant Journal 23, 807815.
  • Knee E.M., Hangarter R.P. & Knee M. (2000) Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings. Physiology Plant 108, 208215.
  • Laubinger S., Fittinghoff K. & Hoecker U. (2004) The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16, 22932306.
  • Lecharny A. & Wagner E. (1984) Stem extension rate in light-grown plants. Evidence for an endogenous circadian rhythm in Chenopodium. Physiology Plant 60, 437443.
  • Lehman A., Black R. & Ecker J.R. (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85, 183194.
  • Leyser H.M., Lincoln C.A., Timpte C., Lammer D., Turner J. & Estelle M. (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364, 161164.
  • Li J., Nagpal P., Vitart V., McMorris T.C. & Chory J. (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398401.
  • Li H., Johnson P., Stepanova A., Alonso J.M. & Ecker J.R. (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Developmental Cell 7, 193204.
  • Lin C. & Shalitin D. (2003) Cryptochrome structure and signal transduction. Annals of Review of Plant Biology 54, 469496.
  • Lin R. & Wang H. (2005) Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiology 138, 949964.
  • Liu X.L., Covington M.F., Fankhauser C., Chory J. & Wagner D.R. (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13, 12931304.
  • Luccioni L.G., Oliverio K.A., Yanovsky M.J., Boccalandro H.E. & Casal J.J. (2002) Brassinosteroid mutants uncover fine tuning of phytochrome signaling. Plant Physiology 128, 173181.
  • McClung C.R. (2000) Circadian rhythms in plants: a millennial view. Physiology Plant 109, 359371.
  • McWatters H.G., Bastow R.M., Hall A. & Millar A.J. (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408, 716720.
  • Makino S., Matsushika A., Kojima M., Yamashino T. & Mizuno T. (2002) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. Plant & Cell Physiology 43, 5869.
  • Mas P., Alabadi D., Yanovsky M.J., Oyama T. & Kay S.A. (2003a) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15, 223236.
  • Mas P., Kim W.Y., Somers D.E. & Kay S.A. (2003b) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426, 567570.
  • Millar A.J., Carre I.A. Strayer C.A., Chua N.H. & Kay S.A. (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 11611163.
  • Mizoguchi T., Wheatley K., Hanzawa Y., Wright L., Mizoguchi M., Song H.R., Carre I.A. & Coupland G. (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Developmental Cell 2, 629641.
  • Mizuno T. & Nakamichi N. (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant & Cell Physiology 46, 677685.
  • Monte E., Tepperman J.M., Al-Sady B., Kaczorowski K.A., Alonso J.M., Ecker J.R., Li X., Zhang Y. & Quail P.H. (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proceedings of the National Academy of Sciences of the USA 101, 1609116098.
  • More H. & Schopfer P. (1994) Plant Physiology. Springer-Verlag, Berlin, Germany.
  • Nagatani A. (2004) Light-regulated nuclear localization of phytochromes. Current Opinion in Plant Biology 7, 708711.
  • Nakajima M., Imai K., Ito H., Nishiwaki T., Murayama Y., Iwasaki H., Oyama T. & Kondo T. (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414415.
  • Nelson D.C., Lasswell J., Rogg L.E., Cohen M.A. & Bartel B. (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101, 331340.
  • Nemhauser J. & Chory J. (2002) Photomorphogenesis. In The Arabidopsis Book (eds C.R.Somerville & E.M. Meyerowitz), pp. 112. Rockville, MD, USA. doi/10.1199/tab.0054, http://www.aspb.org/publications/arabidopsis/
  • Nemhauser J.L., Mockler T.C. & Chory J. (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology 2, e258.
  • Nicol F., His I., Jauneau A., Vernhettes S., Canut H. & Hofte H. (1998) A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO Journal 17, 55635576.
  • Noh B., Murphy A.S. & Spalding E.P. (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13, 24412454.
  • Noh B., Bandyopadhyay A., Peer W.A., Spalding E.P. & Murphy A.S. (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423, 9991002.
  • Okushima Y., Mitina I., Quach H.L. & Theologis A. (2005) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant Journal 43, 2946.
  • Osterlund M.T., Hardtke C.S., Wei N. & Deng X.W. (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462466.
  • Oyama T., Shimura Y. & Okada K. (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes & Development 11, 29832995.
  • Park D.H., Somers D.E., Kim Y.S., Choy Y.H., Lom H.K., Soh M.S., Kim H.J., Kay S.A. & Nam H.G. (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 15791582.
  • Parks B.M., Folta K.M. & Spalding E.P. (2001) Photocontrol of stem growth. Current Opinion in Plant Biology 4, 436440.
  • Perez-Perez J.M., Ponce M.R. & Micol J.L. (2004) The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiology 134, 101117.
  • Reed J.W., Foster K.R., Morgan P.W. & Chory J. (1996) Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiology 112, 337342.
  • Romano C.P., Robson P.R., Smith H., Estelle M. & Klee H. (1995) Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Molecular Biology 27, 10711083.
  • Saibo N.J.M., Vriezen W.H., Beemster G.T.S. & Van Der Straeten D. (2003) Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant Journal 33, 9891000.
  • Salisbury F.B. & Ross C.W. (1978) Plant Physiology, 2nd edn.Wadsworth Publishing Co, Belmont, California, USA.
  • Salome P.A., Michael T.P., Kearns E.V., Fett-Neto A.G., Sharrock R.A. & McClung C.R. (2002) The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. Plant Physiology 129, 16741685.
  • Salome P.A. & McClung C.R. (2004) The Arabidopsis thaliana Clock. Journal of Biological Rhythms 19, 425435.
  • Salome P.A. & McClung C.R. (2005) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant, Cell & Environment 28, 2138.
  • Salter M.G., Franklin K.A. & Whitelam G.C. (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426, 680683.
  • Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carre I.A. & Coupland G. (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 12191229.
  • Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M. & Wisman E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13, 113123.
  • Schultz T.F., Kiyosue T., Yanovsky M., Wada M. & Kay S.A. (2001) A role for LKP2 in the circadian clock of Aradidopsis. Plant Cell 13, 26592670.
  • Schwechheimer C. (2004) The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochimica et Biophysica Acta 1695, 4554.
  • Schwechheimer C., Serino G. & Deng X.W. (2002) Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function. Plant Cell 14, 25532563.
  • Seo H.S., Watanabe E., Tokutomi S., Nagatani A. & Chua N.-H. (2004) Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes & Development 18, 617622.
  • Sharrock R.A. & Clack T. (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiology 130, 442456.
  • Silverstone A.L., Mak P., Martinez E.C. & Sun T. (1997) The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146, 10871099.
  • Smalle J., Haegman M., Kurepa J., Van Montagu M. & Straeten D.V.D. (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proceedings of the National Academy of Sciences of the USA 94, 27562761.
  • Smolen G. & Bender J. (2002) Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics 160, 323332.
  • Somers D.E., Kim W.Y. & Geng R. (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16, 769782.
  • Somers D.E., Webb A.A., Pearson M. & Kay S.A. (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485494.
  • Somers D.E., Schultz T.F., Milnamow M. & Kay S.A. (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101, 319329.
  • Somerville C., Bauer S., Brininstool G., et al. (2004) Toward a systems approach to understanding plant cell walls. Science 306, 22062211.
  • Stacey M.G., Hicks S.N. & Von Arnim A.G. (1999) Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1. Plant Cell 11, 349364.
  • Stacey M.G., Kopp O.R., Kim T.H. & Von Arnim A.G. (2000) Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation and mutational analysis of a nuclear localization signal in planta. Plant Physiology 124, 979990.
  • Staiger D., Allenbach L., Salathia N., Fiechter V., Davis S.J., Millar A.J., Chory J. & Fankhauser C. (2003) The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes & Development 17, 256268.
  • Staiger D., Apel K. & Trepp G. (1999) The Atger3 promoter confers circadian clock-regulated transcription with peak expression at the beginning of the night. Plant Molecular Biology 40, 873882.
  • Staswick P.E., Serban B., Rowe M., Tiryaki I., Maldonado M.T., Maldonado M.C. & Suza W. (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to Indole-3-acetic acid. Plant Cell 17, 616627.
  • Steber C.M. & McCourt P. (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiology 125, 763769.
  • Strayer C., Oyama T., Schultz T.F., Raman R., Somers D.E., Mas P., Panda S., Kreps J.A. & Kay S.A. (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289, 768771.
  • Subramanian C., Kim B.-H., Lyssenko N.N., Xu X., Johnson C.H. & Von Arnim A.G. (2004) The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer. Proceedings of the National Academy of Sciences of the USA 101, 67986802.
  • Swain S.M., Tseng T.S. & Olszewski N.E. (2001) Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiology 126, 11741185.
  • Swain S.M. & Singh D.P. (2005) Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends in Plant Science 10, 123129.
  • Sweeney B.M. (1987) Rhythmic Phenomena in Plants, 2nd edn. Academic Press, San Diego, CA, USA.
  • Symons G.M. & Reid J.B. (2003) Interactions between light and plant hormones during de-etiolation. Journal of Plant Growth Regulation 22, 314.
  • Tepperman J.M., Zhu T., Chang H.S., Wang X. & Quail P.H. (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proceedings of the National Academy of Sciences of the USA 98, 94379442.
  • Thain S.C., Vandenbussche F., Laarhoven L.J., Dowson-Day M.J., Wang Z.Y., Tobin E.M., Harren F.J., Millar A.J. & Van Der Straeten D. (2004) Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiology 136, 37513761.
  • Thomine S., Lelievre F., Boufflet M., Guern J. & Barbier-Brygoo H. (1997) Anion-channel blockers interfere with auxin responses in dark-grown Arabidopsis hypocotyls. Plant Physiology 115, 533542.
  • Tian Q. & Reed J. (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126, 711721.
  • Tseng T.-S., Salome P.A., McClung C.R. & Olszewski N.E. (2004) SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16, 15501563.
  • Tsuchisaka A. & Theologis A. (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiology 136, 29823000.
  • Turk E.M., Fujioka S., Seto H., et al. (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant Journal 42, 2334.
  • Ueguchi-Tanaka M., Ashikari M., Nakajima M., et al. (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693698.
  • Vert G., Nemhauser J.L., Geldner N., Hong F. & Chory J. (2005) Molecular mechanisms of steroid hormone signaling in plants. Annual Review of Cell and Developmental Biology 21, 172201.
  • Wang Z.Y. & Tobin E.M. (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 12071217.
  • Wang H., Ma L.G., Li J.M., Zhao H.Y. & Deng X.W. (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154158.
  • Ward R.R. (1971) The Living Clocks, 1st edn. Knopf, New York, USA.
  • Wasteneys G.O. & Yang Z. (2004) New views on the plant cytoskeleton. Plant Physiology 136, 38843891.
  • Woelfle M.A., Ouyang Y., Phanvijhitsiri K. & Johnson C.H. (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Current Biology 14, 14811486.
  • Woodward A.W. & Bartel B. (2005) Auxin: regulation, action, and interaction. Annals of Botany 95, 707735.
  • Yamashino T., Matsushika A., Fujimori T., Sato S., Kato T., Tabata S. & Mizuno T. (2003) A link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant & Cell Physiology 44, 619629.
  • Yang H.Q., Tang R.H. & Cashmore A.R. (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13, 25732587.
  • Yang J., Lin R., Sullivan J., Hoecker U., Liu B., Xu L., Deng X.W. & Wang H. (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17, 804821.
  • Zagotta M.T., Hicks K.A., Jacobs C.I., Young J.C., Hangarter R.P. & Meeks-Wagner D.R. (1996) The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant Journal 10, 691702.