SEARCH

SEARCH BY CITATION

REFERENCES

  • Ainsworth E.A. & Long S.P. (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165, 351372.
  • Ainsworth E.A., Davey P.A., Hymus G.J., Osborne C.E., Rogers A., Blum H., Nosberger J. & Long S.P. (2003a) Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant, Cell & Environment 26, 705714.
  • Ainsworth E.A., Rogers A., Blum H., Nösberger J. & Long S.P. (2003b) Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to free air CO2 enrichment (FACE). Journal of Experimental Botany 54, 27692774.
  • Ainsworth E.A., Rogers A., Nelson R. & Long S.P. (2004) Testing the ‘source-sink’ hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural & Forest Meteorology 122, 8594.
  • AlbrittonD.L., AllenM.R., AlfonsP.M., et al. (2001) Summary for policy makers. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden & D. Xiaosu), pp. 7320. Cambridge University Press, Cambridge, UK .
  • Almeida J.P.F., Hartwig U.A., Frehner M., Nösberger J. & Löscher A. (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). Journal of Experimental Botany 51, 12891297.
  • Arp W.J. (1991) Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant, Cell & Environment 14, 869875.
  • Assmann S.M. (1993) Signal transduction in guard cells. Annual Review of Cell Biology 9, 345375.
  • Assmann S.M. (1999) The cellular basis of guard cell sensing of rising CO2. Plant, Cell & Environment 22, 629637.
  • Ball J.T., Woodrow I.E., Berry J.A. (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research (ed. J. Biggens), pp. 221224. Martinus-Nijhoff Publishers, Dordrecht, The Netherlands.
  • Bernacchi C.J., Portis A.R., Nakano H., von Caemmerer S. & Long S.P. (2002) Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology 130, 19921998.
  • Bernacchi C.J., Morgan P.B., Ort D.R. & Long S.P. (2005) The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo rubisco capacity. Planta 220, 424446.
  • Brearley J., Venis M.A. & Blatt M.R. (1997) The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta 203, 145154.
  • Bryant J., Taylor G. & Frehner M. (1998) Photosynthetic acclimation to elevated CO2 is modified by source: sink balance in three component species of chalk grassland swards grown in a free air carbon dioxide enrichment (FACE) experiment. Plant, Cell & Environment 21, 159168.
  • Buckley T.M., Mott K.A. & Farquhar G.D. (2003) A hydromechanical model and biochemical model of stomatal conductance. Plant, Cell & Environment 26, 17671785.
  • Bunce J.A. (2004) Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia 140, 110.
  • von Caemmerer S. (2003) C4 photosynthesis in a single C3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C3 leaves. Plant, Cell & Environment 26, 11911197.
  • von Caemmerer S. & Evans J.R. (1991) Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants. Australian Journal of Plant Physiology 18, 287305.
  • von Caemmerer S. & Furbank R.T. (2003) The C4 pathway: an efficient CO2 pump. Photosynthesis Research 77, 191207.
  • von Caemmerer S. & Quick P.W. (2000) Rubisco, physiology in vivo. In Photosynthesis: Physiology and Metabolism (edseds R.C. Leegood, T.D. Sharkey & S. von Caemmerer), pp. 85113. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • von Caemmerer S., Lawson T., Oxborough K., Baker N.R., Andrews T.J. & Raines C.A. (2004) Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. Journal of Experimental Botany 55, 11571166.
  • Cardon Z.G. & Berry J.A. (1992) Effects of O2 and CO2 concentration on the steady-state fluorescence yield of single guard cell pairs in intact leaf discs of Tradescantia albiflora. Evidence for Rubisco-mediated CO2 fixation and photorespiration in guard cells. Plant Physiology 99, 12381244.
  • Cen Y.-P. & Sage R.F. (2005) The regulation of rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiology 139, 979990.
  • Cleland W.W., Andrews T.J., Gutteridge S., Hartman F.C. & Lorimer G.H. (1998) Mechanism of Rubisco: the carbamate as general base. Chemical Review 98, 549561.
  • Cominelli E., Galbiati M., Vavasseur A., Conti L., Sala T., Vuylsteke M., Leonhardt N., Dellaporta S.L. & Tonelli C. (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology 15, 11961200.
  • Conley M.M., Adam N.R., Wall G.W., et al. (2001) CO2 enrichment increases water-use efficiency in sorghum. New Phytologist 151, 407412.
  • Curtis P.S., Vogel C.S., Wang X.Z., Pregitzer K.S., Zak D.R., Lussenhop J., Kubiske M. & Teeri J.A. (2000) Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO2-enriched atmosphere. Ecological Applications 10, 317.
  • Davey P.A., Olcer H., Zakhleniuk O., Bernacchi C.J., Calfapietra C., Long S.P. & Raines C.A. (2006) Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant, Cell & Environment 29, 12351244.
  • Drake B.G., Gonzalez-Meler M.A. & Long S.P. (1997) More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48, 609639.
  • Ellsworth D.S. (1999) CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant, Cell & Environment 22, 461472.
  • Ellsworth D.S., Reich P.B., Naumburg E.S., Koch G.W., Kubiske M.E. & Smith S.D. (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biology 10, 21212138.
  • Estiarte M., Peñuelas J., Kimball B.A., Idso S.B., LaMorte R.L., Pinter P.J., Wall G.W. & Garcia R.L. (1994) Elevated CO2 effects on stomatal density of wheat and sour orange trees. Journal of Experimental Botany 280, 16651668.
  • Farquhar G.D., von Caemmerer S. & Berry J.A. (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 7890.
  • Fischer B.U., Frehner M., Hebeisen T., Zanetti S., Stadelmann F., Lüscher A., Hartwig U.A., Hendrey G.R., Blum H. & Nüsberger J. (1997) Source-sink relations in Lolium perenne L. as reflected by carbohydrate concentrations in leaves and pseudo-stems during regrowth in a free air carbon dioxide enrichment (FACE) experiment. Plant, Cell & Environment 20, 945952.
  • Foley J.A., Prentice I.C., Ramankutty N., Levis S., Pollard D., Sitch S. & Haxeltine A. (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10, 603628.
  • Ghannoum O., von Caemmerer S., Ziska L.H. & Conroy J.P. (2000) The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant, Cell & Environment 23, 931942.
  • Gray J. (2005) Guard cells: transcription factors regulate stomatal movements. Current Biology 15, R593R595.
  • Gray J.E., Holroyd G.H., van der Lee F.M., Bahrami A.R., Sijmons P.C., Woodward F.I., Schuch W. & Hetherington A.M. (2000) The HIC signaling pathway links CO2 perception to stomatal development. Nature 408, 713716.
  • Gunderson C.A., Sholtis J.D., Wullshleger S.D., Tissue D.T., Hanson P.J. & Norby R.J. (2002) Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell & Environment 25, 379393.
  • Hanstein S.M. & Felle H.H. (2002) CO2-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. Plant Physiology 130, 940950.
  • Hashimoto M., Negi J., Young J., Israelsson M., Schroeder J.I. & Iba K. (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nature Cell Biology 8, 391398.
  • Heldt H.W. (2005) Plant Biochemistry, pp. 165192. Elsevier, San Diego, CA, USA.
  • Herrick J.D., Maherali H. & Thomas R.B. (2004) Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytologist 162, 387396.
  • Hetherington A.M. (2001) Guard cell signaling. Cell 107, 711714.
  • Hetherington A.M. & Woodward F.I. (2003) The role of stomata in sensing and driving environmental change. Nature 424, 901908.
  • Hungate B.A., Stiling P.D., Dijkstra P., Johnson D.W., Ketterer M.E., Hymus G.J., Hinkle C.R. & Drake B.G. (2004) CO2 elicits long-term decline in nitrogen fixation. Science 304, 1291.
  • Isopp H., Frehner M., Long S.P. & Nösberger J. (2000) Sucrose-phosphate synthase responds differently to source-sink relations and to photosynthetic rate: Lolium perenne L. growing at elevated pCO2 in the field. Plant, Cell & Environment 23, 597607.
  • Kiirats O., Lea P.F., Franceschi V.R. & Edwards G.E. (2002) Bundle sheath diffusive resistance to CO2 and effectiveness of C4 photosynthesis and refixation of photorespired CO2 in a C4 cycle mutant and wild-type Amaranthus edulis. Plant Physiology 130, 964976.
  • Kimball B.A. (2006) The effects of free-air [CO2] enrichment of cotton, wheat and sorghum. In Managed Ecosystems and CO2. Case Studies, Processes and Perspectives (eds J. Nösberger, S.P. Long, R.J. Norby, M. Stitt, G.R. Hendrey & H. Blum), pp. 4770. Springer-Verlag, Heidelberg, Berlin, Germany.
  • Lake J.A., Quick W.P., Beerling D.J. & Woodward F.I. (2001) Plant development – signals from mature to new leaves. Nature 411, 154154.
  • Lake J.A., Woodward F.I. & Quick W.P. (2002) Long-distance CO2 signalling in plants. Journal of Experimental Botany 53, 183193.
  • Lawson T., Oxborough K., Morison J.I.L. & Baker N.R. (2002) Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiology 128, 5262.
  • Lawson T., Oxborough K., Morison J.I.L. & Baker N.R. (2003) The response of guard and mesophyll cell photosynthesis to CO2, O2, light an water stress in a range of species are similar. Journal of Experimental Botany 54, 17431752.
  • Leakey A.D.B., Bernacchi C.J., Dohleman F.G., Ort D.R. & Long S.P. (2004) Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future CO2 rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Global Change Biology 10, 951962.
  • Leakey A.D.B., Bernacchi C.J., Ort D.R. & Long S.P. (2006a) Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant, Cell & Environment 29, 17941800.
  • Leakey A.D.B., Uribelarrea M., Ainsworth E.A., Naidu S.L., Rogers A., Ort D.R. & Long S.P. (2006b) Photosynthesis, productivity and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology 140, 779790.
  • Liang Y.K., Dubos C., Dodd I.C., Holroyd G.H., Hetherington A.M. & Campbell M.M. (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Current Biology 15, 12011206.
  • Long S.P. (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant, Cell & Environment 14, 729739.
  • Long S.P. & Drake B.G. (1992) Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations. In Crop Photosynthesis Spatial and Temporal Determinants (eds N.R. Baker & H. Thomas), pp. 69103. Elsevier, Amsterdam, The Netherlands.
  • Long S.P., Ainsworth E.A., Rogers A. & Ort D.R. (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55, 591628.
  • Long S.P., Ainsworth E.A., Bernacchi C.J., Davey P.A., Hymus G.J., Leakey A.D.B., Morgan P.B. & Osborne C.P. (2006a) Long-term responses of photosynthesis and stomata to elevated [CO2] in managed systems. In Managed Ecosystems and CO2. Case Studies, Processes and Perspectives (eds J. Nösberger, S.P. Long, R.J. Norby, M. Stitt, G.R. Hendrey & H. Blum), pp. 253270. Springer-Verlag, Heidelberg, Germany.
  • Long S.P., Ainsworth E.A., Leakey A.D.B., Nosberger J. & Ort D.R. (2006b) Food for thought: lower than expected crop yield stimulation with rising CO2 concentrations. Science 312, 19181921.
  • Long S.P., Zhu X.-G., Naidu S.L. & Ort D.R. (2006c) Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment 29, 315330.
  • Luo Y., Su B., Currie W.S., et al. (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54, 731739.
  • Makino A., Shimada T., Takumi S., Kaneko K., Matsuoka M., Shimamoto K., Nakano H., MiyaoTokutomi M., Mae T. & Yamamoto N. (1997) Does decrease in ribulose-1,5-bisphosphate carboxylase by antisense RbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? Plant Physiology 114, 483491.
  • Marchi S., Tognetti R., Vaccari F.P., Lanini M., Kaligaric M., Miglietta F. & Raschi A. (2004) Physiological and morphological responses of grassland species to elevated atmospheric CO2 concentrations in FACE-systems and natural CO2 springs. Functional Plant Biology 31, 181194.
  • Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J., et al. (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149, 247264.
  • Messinger S.M., Buckley T.N. & Mott K.A. (2006) Evidence for the involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiology 140, 771778.
  • Moore B.D., Cheng S.H., Sims D. & Seemann J.R. (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell & Environment 22, 567582.
  • Morgan J.A., Pataki D.E., Körner C., et al. (2004) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140, 1125.
  • Mott K.A. (1988) Do stomata respond to CO2 concentrations other than intercellular? Plant Physiology 86, 200203.
  • Naumburg E., Housman D.C., Huxman T.E., Charlet T.N., Loik M.E. & Smith S.D. (2003) Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. Global Change Biology 9, 276285.
  • Nijs I., Ferris R., Blum H., Hendrey G. & Impens I. (1997) Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant, Cell & Environment 20, 10411050.
  • Norby R.J., Wullschleger S.D., Gunderson C.A., Johnson D.W. & Ceulemans R. (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, Cell & Environment 22, 683714.
  • Nowak R.S., Ellsworth D.S. & Smith S.D. (2004) Functional responses of plants to elevated atmospheric CO2 – dophotosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162, 253280.
  • Parry M.A.J., Andralojc P.J., Mitchell R.A.C., Madgwick P.J. & Keys A.J. (2003) Manipulation of Rubisco: the amount, activity, function and regulation. Journal of Experimental Botany 54, 13211333.
  • Pei Z.M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E. & Schroeder J.I. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406, 731734.
  • Portis A.R. (2003) Rubisco activase – rubisco's catalytic chaperone. Photosynthesis Research 75, 1127.
  • Raschke K., Shabahang M. & Wolf R. (2003) The slow and the quick anion conductance in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. Planta 217, 639650.
  • Reid C.D., Maherali H., Johnson H.B., Smith S.D., Wullschleger S.D. & Jackson R.B. (2003) On the relationship between stomatal characters and atmospheric CO2. Geophysical Research Letters 30, 19831986.
  • Roelfsema M.R.G., Konrad K.R., Marten H., Psaras G.K., Hartung W. & Hedrich R. (2006) Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO2 and abscisic acid. Plant, Cell & Environment 29, 15951605.
  • Rogers A. & Ainsworth E.A. (2006) The response of foliar carbohydrates to elevated carbon dioxide concentration. In Managed Ecosystems and CO2. Case Studies, Processes and Perspectives (eds J. Nösberger, S.P. Long, R.J. Norby, M. Stitt, G.R. Hendrey & H. Blum), pp. 293308. Springer-Verlag, Heidelberg, Germany.
  • Rogers A. & Humphries S.W. (2000) A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Global Change Biology 6, 10051011.
  • Rogers A., Fischer B.U., Bryant J., Frehner M., Blum H., Raines C.A. & Long S.P. (1998) Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiology 118, 683689.
  • Rogers A., Allen D.J., Davey P.A., et al. (2004) Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide enrichment. Plant, Cell & Environment 27, 449458.
  • Rogers A., Ainsworth E.A. & Kammann C. (2006a) Perspectives of the future of free air CO2 enrichment studies. In Managed Ecosystems and CO2. Case Studies, Processes and Perspectives (eds J. Nösberger, S.P. Long, R.J. Norby, M. Stitt, G.R. Hendrey & H. Blum), pp. 431450. Springer-Verlag, Heidelberg, Germany.
  • Rogers A., Gibon Y., Stitt M., Morgan P.B., Bernacchi C.J., Ort D.R. & Long S.P. (2006b) Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant, Cell & Environment 29, 16511658.
  • Rolland F., Moore B. & Sheen J. (2002) Sugar sensing and signaling in plants. Plant Cell 14, S185–S205.
  • Rolland-Bamford A.J., Baker J.T., Allen L.H. & Bowes G. (1991) Acclimation of rice to changing atmospheric carbon dioxide concentration. Plant, Cell & Environment 14, 577583.
  • Sage R.F. (2004) The evolution of C4 photosynthesis. New Phytologist 161, 341370.
  • Sage R.F., Pearcy W.R. & Seemann J.R. (1987) The nitrogen use efficiency of C3 and C4 plants. III Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology 85, 355359.
  • Sage R.F., Sharkey T.D. & Seemann J.R. (1988) The response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation state and pool sizes of photosynthetic intermediates to elevated CO2 in Phaseolus vulgaris. Plant Physiology 174, 407416.
  • Samarakoon A.B. & Gifford R.M. (1996) Elevated CO2 effects on water use and growth of maize in wet and drying soil. Australian Journal of Plant Physiology 23, 5362.
  • Saxe H., Ellsworth D.S. & Heath J. (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139, 395436.
  • Schroeder J.I., Allen G.J., Hugouvieux V., Kwak J.M. & Waner D. (2001) Guard cell signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology 52, 627658.
  • Seneweera S.P., Ghannoum O. & Conroy J. (1998) High vapour pressure deficit and low soil water availability enhance shoot growth responses of a C4 grass (Panicum coloratum cv. Bambatsi) to CO2 enrichment. Australian Journal of Plant Physiology 25, 287292.
  • Sicher R.C. & Bunce J.A. (1997) Relationship of photosynthetic acclimation to changes of Rubisco activity in field-grown winter wheat and barley during growth in elevated carbon dioxide. Photosynthesis Research 52, 2738.
  • Siedow J.N. & Day D.A. (2000) Respiration and photorespiration. In Biochemistry and Molecular Biology of Plants (eds B.B. Buchanan, W. Gruissem & R.L. Jones ), pp. 676728. American Society of Plant Physiologists, Rockville, MD, USA.
  • Smeekens S. (2000) Sugar-induced signal transduction in plants. Annual Review of Plant Biology and Plant Molecular Biology 51, 4981.
  • Spreitzer R.J. (1999) Questions about the complexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynthesis Research 60, 2942.
  • Stitt M. (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell & Environment 14, 741762.
  • Stitt M. & Krapp A. (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment 22, 583621.
  • Stitt M. & Quick P. (1989) Photosynthetic carbon partitioning: its regulation and possibilities for manipulation. Physiologia Plantarum 77, 663641.
  • Stitt M., Quick W.P., Schurr U., Schulze E.D., Rodermel S.R. & Bogorad L. (1991) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with antisense Rbcs.2. flux-control coefficients for photosynthesis in varying light, CO2, and air humidity. Planta 183, 555566.
  • Tcherkez G.G.B., Farquhar G.D. & Andrews T.J. (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proceedings of the National Academy of Sciences USA 103, 72467251.
  • Tominaga M., Kinoshita T. & Shimakaki K-i. (2001) Guard-cell chloroplasts provide ATP required for H+ pumping in the plasma membrane and stomatal opening. Plant Cell Physiology 42, 795802.
  • Tricker P.J., Trewin H., Kull O., Clarkson G.J.J., Eensalu E., Tallis M.J., Colella A., Doncaster C.P., Sabatti M. & Taylor G. (2005) Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143, 652660.
  • Vavasseur A. & Raghavendra A.S. (2005) Guard cell metabolism and CO2 sensing. New Phytologist 165, 665682.
  • Wall G.W., Brooks T.J., Adam N.R., et al. (2001) Elevated atmospheric CO2 improved Sorghum plant water status by ameliorating the adverse effects of drought. New Phytologist 152, 231248.
  • Wand S.J.E., Midgley G.F., Jones M.H. & Curtis P.S. (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology 5, 723741.
  • Webb A.A.R., McAinsh M.R., Mansfield T.A. & Hetherington A.M. (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant Journal 9, 297304.
  • Woodward F.I. & Kelly C.K. (1995) The influence of CO2 concentration on stomatal density. New Phytologist 131, 311327.
  • Woodward F.I., Lake J.A. & Quick W.P. (2002) Stomatal development and CO2: ecological consequences. New Phytologist 153, 477484.
  • Wullschleger S.D. (1993) Biochemical limitations to carbon assimilation in C3 plants – a retrospective analysis of the A/ci curves from 109 species. Journal of Experimental Botany 44, 907920.
  • Wullschleger S.D., Tschaplinski T.J. & Norby R.J. (2002) Plant water relations at elevated CO2 – implications for water-limited environments. Plant, Cell & Environment 25, 319331.
  • Young J.J., Mehta S., Israelsson M., Godoski J., Grill E. & Schroeder J.I. (2006) CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proceedings of the National Academy of Sciences USA 103, 75067511.
  • Zeiger E., Talbott L.D., Frechilla S. Srivastava A. & Zhu J. (2002) The guard cell chloroplast: a perspective for the twenty-first century. New Phytologist 153, 415424.
  • Zhu J., Talbott L.D., Jin X. & Zeiger E. (1998) The stomatal response to CO2 is linked to changes in guard cell zeaxanthin. Plant, Cell & Environment 21, 813820.