SEARCH

SEARCH BY CITATION

REFERENCES

  • Ballaré C.L. (1999) Keeping up with the neighbours: phytochrome sensing and other signaling mechanisms. Trends in Plant Science 4, 97102.
  • Ballaré C.L., Casal J.J. & Kendrick R.E. (1991) Responses of light-grown wild-type and long-hypocotyl mutant cucumber seedlings to natural and simulated shade. Photochemistry and Photobiology 54, 819826.
  • Botto J.F., Sánchez R.A., Whitelam G.C. & Casal J.J. (1996) Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiology 110, 439444.
  • Casal J.J. (1996) Phytochrome A enhances the promotion of hypocotyl growth caused by reductions in levels of phytochrome B in its far-red-light-absorbing form in light-grown Arabidopsis thaliana. Plant Physiology 112, 965973.
  • Casal J.J. & Sánchez R.A. (1994) Impaired stem-growth response to blue-light irradiance in light-grown transgenic tobacco seedlings overexpressing Avena phytochrome A. Physiologia Plantarum 91, 268272.
  • Casal J.J., Clough R.C. & Vierstra R.D. (1996) High-irradiance responses induced by far-red light in grass seedlings of the wild type or overexpressing phytochrome A. Planta 200, 132137.
  • Childs K.L., Pratt L.H. & Morgan P.W. (1991) Genetic regulation of development in Sorghum bicolor. VI. The ma3R allele results in abnormal phytochrome physiology. Plant Physiology 97, 714719.
  • Childs K.L., Cordonnier-Pratt M-M., Pratt L.H. & Morgan P.W. (1992) Genetic regulation of development in Sorghum bicolor. VII. ma3R flowering mutant lacks a phytochrome that predominates in green tissue. Plant Physiology 99, 765770.
  • Childs K.L., Miller F.R., Cordonnier-Pratt M-M., Pratt L.H., Morgan P.W. & Mullet J.E. (1997) The sorghum photoperiod insensitivity gene, Ma3, encodes a phytochrome B. Plant Physiology 113, 611619.
  • Clack T., Mathews S. & Sharrock R.A. (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Molecular Biology 25, 413427.
  • Clough R.C. & Vierstra R.D. (1997) Phytochrome degradation. Plant, Cell & Environment 20, 713721.
  • Devlin P.F., Patel S.R. & Whitelam G.C. (1998) Phytochrome E influences internode elongation and flowering time in Arabidopsis. The Plant Cell 10, 14791487.
  • Devlin P.F., Robson P.R.H., Patel S.R., Goosey L., Sharrock R.A. & Whitelam G.C. (1999) Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiology 119, 909915.
  • Finlayson S.A., Lee I-J. & Morgan P.W. (1998) Phytochrome B and the regulation of circadian ethylene production in sorghum. Plant Physiology 116, 1725.
  • Finlayson S.A., Lee I-J., Mullet J.E. & Morgan P.W. (1999) The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiology 119, 10831089.
  • Finlayson S.A., Gohil H.L., Kato-Noguchi H., Lee I-J. & Morgan P.W. (2004) Circadian ethylene synthesis in Sorghum bicolor: expression and control of the system at the whole plant level. Journal of Plant Growth Regulation 23, 2936.
  • Finlayson S.A., Mullet J.E. & Morgan P.W. (2006) Phytochrome B and shade signals regulate phytochrome A expression. Physiologia Plantarum 127, 326337.
  • Franklin K.A., Praekelt U., Stoddart W.M., Billingham O.E., Halliday K.J. & Whitelam G.C. (2003) Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiology 131, 13401346.
  • Kathiresan A., Reid D.M. & Chinnappa C.C. (1996) Light and temperature entrained circadian regulation of activity and mRNA accumulation of 1-aminocyclopropane-1-carboxylic acid oxidase in Stellaria longipes. Planta 199, 329335.
  • Kozuka T., Horiguchi G., Kim G-T., Ohgishi M., Sakai T. & Tsukaya H. (2005) The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by photoreceptors and sugar. Plant & Cell Physiology 46, 213223.
  • Kurepin L.V., Walton L.J., Reid D.M., Pharis R.P. & Chinnappa C.C. (2006) Growth and ethylene evolution by shade and sun ecotypes of Stellaria longipes in response to varied light quality and irradiance. Plant, Cell & Environment 29, 647652.
  • Kurepin L.V., Walton L.J. & Reid D.M. (2007) Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regulation 51, 5361.
  • Mathews S. & Sharrock R.A. (1996) The phytochrome gene family in grasses (Poacea): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. Molecular Biology and Evolution 13, 11411150.
  • Mathews S. & Sharrock R.A. (1997) Phytochrome gene diversity. Plant, Cell & Environment 20, 666671.
  • Monte E., Alonso J.M., Ecker J.R., Zhang Y., Xin L., Young J., Austin-Phillips S. & Quail P.H. (2003) Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. The Plant Cell 15, 19621980.
  • Nagatani A., Chory J. & Furuya M. (1991) Phytochrome-B is not detectable in the Hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant & Cell Physiology 32, 11191122.
  • Nagatani A., Reed J.W. & Chory J. (1993) Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiology 102, 269277.
  • Pao C-I. & Morgan P.W. (1986) Genetic regulation of development in Sorghum bicolor. I. Role of the maturity genes. Plant Physiology 82, 575580.
  • Pierik R., Cuppens M.L.C., Voesenek L.A.C.J. & Visser E.J.W. (2004a) Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiology 136, 29282936.
  • Pierik R., Whitelam G.C., Voesenek L.A.C.J., De Kroon H. & Visser E.J.W. (2004b) Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signaling. The Plant Journal 38, 310319.
  • Quinby J.R. (1967) The maturity genes of sorghum. In Advances in Agronomy (ed. A.G.Norman) Vol. 19, pp. 267305. Academic Press, New York, NY, USA.
  • Reddy R.K. & Sharma R. (1998) Spatial distribution and temporal regulation of phytochromes A and B levels in maize seedlings. Plant Physiology and Biochemistry 36, 737745.
  • Reed J.W., Nagpal P., Poole D.S., Furuya M. & Chory J. (1993) Mutations in the gene for the red/far-red light photoreceptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. The Plant Cell 5, 147157.
  • Reed J.W., Nagatani A., Elich T.D., Fagan M. & Chory J. (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiology 104, 11391149.
  • Rieu I., Cristescu S.M., Harren F.J.M., Huibers W., Voesenek L.A.C.J., Mariani C. & Vriezen W.H. (2005) RP-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production. Journal of Experimental Botany 56, 841849.
  • Robson P.R.H., Whitelam G.C. & Smith H. (1993) Selected components of the shade-avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa deficient in phytochrome B. Plant Physiology 102, 11791184.
  • Salter M.G., Franklin K.A. & Whitelam G.C. (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426, 680683.
  • Sawers R.J.H., Sheehan M.J. & Brutnell T.P. (2005) Cereal phytochromes: targets of selection, targets for manipulation? Trends in Plant Science 10, 138143.
  • Smith H. (1982) Light quality, photoperception, and plant strategy. Annual Review of Plant Physiology 33, 481518.
  • Smith H. (1995) Physiological and ecological function within the phytochrome family. Annual Review of Plant Physiology and Molecular Biology 46, 289315.
  • Takano M., Kanegae H., Shinomura T., Miyao A., Hirochika H. & Furuya M. (2001) Isolation and characterization of rice phytochrome A mutants. The Plant Cell 13, 521534.
  • Takano M., Inagaki N., Xie X., et al . (2005) Distinct and cooperative functions of phytochromes A, B and C in the control of deetiolation and flowering in rice. The Plant Cell 17, 33113325.
  • Thain S.C., Vandenbussche F., Laarhoven L.J.J., Dowson-Day M.J., Wang Z-Y., Tobin E.M., Harren F.J.M., Millar A.J. & Van Der Straeten D. (2004) Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiology 136, 37513761.
  • Vandenbussche F., Vriezen W.H., Smalle J., Laarhoven L.J.J., Harren F.J.M. & Van Der Straeten D. (2003) Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiology 133, 517527.
  • Vandenbussche F., Pierik R., Millenaar F.F., Voesenek L.A.C.J. & Van Der Straeten D. (2005) Reaching out of the shade. Current Opinion in Plant Biology 8, 462468.
  • Weller J.L., Murfet I.C. & Reid J.B. (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiology 114, 12251236.
  • Whitelam G.C., Johnson E., Peng J., Carol P., Anderson M.L., Cowl J.S. & Harberd N.P. (1993) Phytochrome a null mutants of Arabidopsis display a wild-type phenotype in white light. The Plant Cell 5, 757768.
  • Yanovsky M.J., Alconada-Magliano T.M., Mazella M.A., Gatz C., Thomas B. & Casal J.J. (1998) Phytochrome A affects stem growth, anthocyanin synthesis, sucrose-phosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta 205, 235241.