SEARCH

SEARCH BY CITATION

REFERENCES

  • Basha E., Friedrich K.L. & Vierling E. (2006) The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. Journal of Biological Chemistry 281, 3994339952.
  • Battaglia M., Olvera-Carrillo Y., Garciarrubio A., Campos F. & Covarrubias A.A. (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiology 148, 624.
  • Bravo L.A., Gallardo J., Navarrete A., Olave N., Martínez J., Alberdi J., Close T.J. & Corcuera L.J. (2003) Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiologia Plantarum 118, 262269.
  • Bray E.A. (1997) Plant responses to water deficit. Trends in Plant Science 2, 4854.
  • Campos F., Zamudio F. & Covarrubias A.A. (2006) Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth. Biochemical and Biophysical Research Communications 342, 406413.
  • Carpenter J.F. & Crowe J.H. (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiology 25, 244255.
  • Carpenter J.F. & Crowe J.H. (1989) An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28, 39163922.
  • Close T.J. (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiologia Plantarum 100, 291296.
  • Colmenero-Flores J.M., Moreno L.P., Smith C.E. & Covarrubias A.A. (1999) Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiology 120, 93104.
  • Dure L., 3rd (1993) Structural motifs in LEA proteins. In Plant Responses to Cellular Dehydration during Environmental Stress (eds T.J.Close & E.A.Bray) pp. 91103. The American Society of Plant Physiologists, Rockville, MD, USA.
  • Elbein A.D., Pan Y.T., Pastuszak I. & Carroll D. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R27R.
  • Garay-Arroyo A., Colmenero-Flores J.M., Garciarrubio A. & Covarrubias A.A. (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry 275, 56685674.
  • Goyal K., Walton L.J. & Tunnacliffe A. (2005) LEA proteins prevent protein aggregation due to water stress. Biochemical Journal 388, 151157.
  • Hara M., Terashima S. & Kuboi T. (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. Journal of Plant Physiology 158, 13331339.
  • Honjoh K.I., Matsumoto H., Shimizu H., et al. (2000) Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Bioscience Biotechnology and Biochemistry 64, 16561663.
  • Houde M., Daniel C., Lachapelle M., Allard F., Laliberte S. & Sarhan F. (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. The Plant Journal 8, 583593.
  • Imai R., Chang L., Ohta A., Bray E.A. & Takagi M. (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170, 243248.
  • Ingram J. & Bartels D. (1996) The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 377403.
  • Ismail A.M., Hall A.E. & Close T.J. (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proceedings of the National Academy of Sciences of the United State of America 96, 1356613570.
  • Kazuoka T. & Oeda K. (1994) Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant and Cell Physiology 35, 601611.
  • Kiyosue T., Yamaguchi-Shinozaki K. & Shinozaki K. (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant and Cell Physiology 35, 225231.
  • Lim C.C., Krebs S.L. & Arora R. (1999) A 25-kDa dehydrin associated with genotype- and age-dependent leaf freezing-tolerance in Rhododendron: a genetic marker for cold hardiness? Theoretical and Applied Genetics 99, 912928.
  • Lin C. & Thomashow M.F. (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochemical and Biophysical Research Communications 183, 11031108.
  • Marian C.O., Krebs S.L. & Arora R. (2004) Dehydrin variability among rhododendron species: a 25-kDA dehydrin is conserved and associated with cold acclimation across diverse species. New Phytologist 161, 773780.
  • Momma M., Kaneko S., Haraguchi K. & Matsukura U. (2003) Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Bioscience Biotechnology and Biochemistry 67, 18321835.
  • Mouillon J.M., Gustafsson P. & Harryson P. (2006) Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiology 141, 638650.
  • Puhakainen T., Hess M.W., Makela P., Svensson J., Heino P. & Palva E.T. (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology 54, 743753.
  • Reyes J.L., Rodrigo M.-J., Colmenero-Flores J.M., Gil J.-V., Garay-Arroyo A., Campos F., Salamini F., Bartels D. & Covarrubias A.A. (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant, Cell & Environment 28, 709718.
  • Sanchez-Ballesta M.T., Rodrigo M.J., Lafuente M.T., Granell A. & Zacarias L. (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. Journal of Agricultural and Food Chemistry 52, 19501957.
  • Shih M., Lin S., Hsieh J., Tsou C., Lin T. & Hsing Y.C. (2004) Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Molecular Biology 56, 689703.
  • Stirling P.C., Bakhoum S.F., Feigl A.B. & Leroux M.R. (2006) Convergent evolution of clamp-like binding sites in diverse chaperones. Nature Structural and Molecular Biology 13, 865870.
  • Stryer L. (1965) The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. Journal of Molecular Biology 13, 482495.
  • Sun Y. & MacRae T.H. (2005) Small heat shock proteins: molecular structure and chaperone function. Cellular and Molecular Life Sciences 62, 24602476.
  • Tunnacliffe A. & Wise M.J. (2007) The continuing conundrum of the LEA proteins. Die Naturwissenschaften. doi: 10.1007/s00114-007-0254-y
  • Wei H., Dhanaraj A.L., Rowland L.J., Fu Y., Krebs S.L. & Arora R. (2005) Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michaux. Planta 221, 406416.
  • Wisniewsk M., Webb R., Balsamo R., Close T.J., Yu X.M. & Griffith M. (1999) Purification, imunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiologia Plantarum 105, 600608.
  • Xiong L., Schumaker K.S. & Zhu J.K. (2002) Cell signaling during cold, drought, and salt stress. The Plant Cell 14 (Suppl.), S165183.
  • Yamaguchi-Shinozaki K. & Shinozaki K. (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science 10, 8894.