SEARCH

SEARCH BY CITATION

REFERENCES

  • Allison G.B., Gat J.R. & Leaney F.W.J. (1985) The relationship between deuterium and oxygen-18 values in leaf water. Chemical Geology 58, 145156.
  • Badeck F.-W., Tcherkez G., Nogués S., Piel C. & Ghashghaie J. (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs – a widespread phenomenon. Rapid Communications in Mass Spectrometry 19, 13811391.
  • Baldocchi D.D. & Bowling D.R. (2003) Modelling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. Plant, Cell & Environment 26, 231244.
  • Barbaroux C. & Bréda N. (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology 22, 12011210.
  • Barbaroux C., Bréda N. & Dufrene E. (2003) Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytologist 157, 605615.
  • Barbour M.M. & Farquhar G.D. (2000) Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell & Environment 23, 473485.
  • Barbour M.M. & Farquhar G.D. (2003) Do pathways of water movement and leaf anatomical dimensions allow development of gradients in H218O between veins and the sites of evaporation within the leaves? Plant, Cell & Environment 27, 115.
  • Barbour M.M., Schurr U., Henry B.K., Wong S.C. & Farquhar G.D. (2000) Variations in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Péclet effect. Plant Physiology 123, 671679.
  • Barbour M.M., Andrews T.J. & Farquhar G.D. (2001) Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Australian Journal of Plant Physiology 28, 335348.
  • Barbour M.M., Walcroft A.S. & Farquhar G.D. (2002) Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell & Environment 25, 14831499.
  • Barbour M.M., Roden J.S., Farquhar G.D. & Ehleringer J.R. (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia 138, 426435.
  • Barbour M.M., Hunt J.E., Dungan R.J., Turnbull M.H., Brailsford G.W., Farquhar G.D. & Whitehead D. (2005) Variation in the degree of coupling between δ13C of phloem sap and ecosystem respiration in two mature Nothofagus forests. New Phytologist 166, 497512.
  • Bathellier C., Tcherkez G., Bligny R., Gout E., Cornic G. & Ghashghaie J. (2009) Metabolic origin of the δ13C of respired CO2 in roots of Phaseolus vulgaris. New Phytologist 181, 387399.
  • Berbigier P., Bonnefond J.-M. & Mellmann P. (2001) CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agricultural and Forest Meteorology 108, 183197.
  • Bernacchi C.J., Singsaas E.L., Pimentel C., Portis A.R. & Long S.P. (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell & Environment 24, 253259.
  • Brandes E., Kodama N., Whittaker K., Weston C., Rennenberg H., Keitel C., Adams M.A. & Gessler A. (2006) Short-term variation in the isotopic composition of organic matter allocated from the leaves to the stem of Pinus sylvestris: effects of photosynthetic and postphotosynthetic carbon isotope fractionation. Global Change Biology 12, 19221939.
  • Caird M.A., Richards J.H. & Donovan L.A. (2007) Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology 143, 410.
  • Cappa C.D., Hendricks M.B., DePaolo D.J. & Cohen R.C. (2003) Isotopic fractionation of water during evaporation. Journal of Geophysical Research 108, 4525. doi: 4510.1029/2003JD003597
  • Cernusak L.A., Pate J.S. & Farquhar G.D. (2002) Diurnal variation in the stable isotope composition of water and dry matter in fruiting Lupinus angustifolius under field conditions. Plant, Cell & Environment 25, 893907.
  • Cernusak L.A., Wong S.-C. & Farquhar G.D. (2003) Oxygen isotope composition of phloem sap in relation to leaf water in Ricinus communis. Functional Plant Biology 30, 10591070.
  • Cernusak L.A., Farquhar G.D. & Pate J.S. (2005) Environmental and physiological controls over carbon and oxygen isotope composition of Tasmanian blue gum, Eucalyptus globulus. Tree Physiology 25, 129146.
  • Chen J.M. & Black T.A. (1992) Defining leaf area index for non-flat leaves. Plant, Cell & Environment 15, 421429.
  • Cuntz M., Ogée J., Farquhar G.D., Peylin P. & Cernusak L.A. (2007) Modelling advection and diffusion of water isotopologues in leaves. Plant, Cell & Environment 30, 892909.
  • Damesin C. & Lelarge C. (2003) Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant, Cell & Environment 26, 207219.
  • Danis P.A., Masson-Delmotte V., Stievenard M., Guillemin M.T., Daux V., Naveau P. & Von Grafenstein U. (2006) Reconstruction of past precipitation δ18O using tree-ring cellulose δ18O and δ13C: a calibration study near Lac d'Annecy, France. Earth and Planetary Science Letters 243, 439448.
  • Deslauriers A., Rossi S. & Anfodillo T. (2007) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25, 113124.
  • Deslauriers A., Rossi S., Anfodillo T. & Saracino A. (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology 28, 863871.
  • Dewar R.C., Medlyn B.E. & McMurtrie R.E. (1998) A mechanistic analysis of light and carbon use efficiencies. Plant, Cell & Environment 21, 573588.
  • Dieuaide-Noubhani M., Raffard G., Canioni P., Pradet A. & Raymond P. (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from C-13 or C-14-labeled glucose. Journal of Biological Chemistry 270, 1314713159.
  • Dongmann G., Nürnberg H.W., Förstel H. & Wagener K. (1974) On the enrichment of H218O in the leaves of transpiring plants. Radiation and Environmental Biophysics 11, 4152.
  • Farquhar G.D. & Cernusak L.A. (2005) On the isotopic composition of leaf water in the non-steady state. Functional Plant Biology 32, 293303.
  • Farquhar G.D. & Lloyd J. (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In Stable Isotopes and Plant Carbon–Water Relations (eds J.R.Ehleringer, A.E.Hall & G.D.Farquhar), pp. 4770. Academic Press, San Diego, CA, USA.
  • Farquhar G.D. & Richards R.A. (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology 11, 539552.
  • Farquhar G.D., O'Leary M.H. & Berry J. (1982) On the relatioship between carbon isotope discrimination and the intercellular carbon dioxide concentrations in leaves. Australian Journal of Plant Physiology 9, 121137.
  • Farquhar G.D., Hubick K.T., Condon A.G. & Richards R.A. (1989) Carbon isotope fractionation and plant water-use efficiency. In Stable Isotopes in Ecological Research (eds P.W.Rundel, J.R.Ehleringer & K.A.Nagy), pp. 2140. Springer-Verlag, New-York, NY, USA.
  • Farquhar G.D., Barbour M.M. & Henry B.K. (1998) Interpretation of oxygen isotope composition of leaf material. In Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes (ed. H.Griffiths), pp. 2762. BIOS Scientifc Publishers Ltd., Oxford, UK.
  • Farquhar G.D., Cernusak L.A. & Barnes B. (2007) Heavy Water Fractionation during Transpiration. Plant Physiol 143, 1118.
  • Fritts H.C., Shashkin A.V. & Downes G.M. (1999) A simulation model of conifer ring growth and cell structure. In Tree-ring Analysis: Biological, Methodological and Environmental Aspects (eds R.Wimmer & R.E.Vetter), pp. 332. CAB International, Wallingford, UK.
  • Gessler A., Rennenberg H. & Keitel C. (2004) Stable isotope composition of organic compounds transported in the phloem of European beech – evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport. Plant Biology 6, 721729.
  • Gessler A., Keitel C., Kodama N., Weston C., Winters A.J., Keith H., Grice K., Leuning R. & Farquhar G.D. (2007) δ13C of organic matter transported from the leaves to the roots in Eucalyptus delegatensis: short-term variations and relation to respired CO2. Functional Plant Biology 34, 692706.
  • Gessler A., Tcherkez G., Karyanto O., Keitel C., Ferrio J.P., Ghashghaie J., Kreuzwieser J. & Farquhar G.D. (2009) On the metabolic origin of the carbon isotope composition of CO2 evolved from darkened light-acclimated leaves in Ricinus communis. New Phytologist 181, 374386.
  • Granier A. & Loustau D. (1994) Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agricultural and Forest Meteorology 71, 6181.
  • Gray J. & Thompson P. (1976) Climatic information from 18O/16O ratios of cellulose in tree rings. Nature 262, 481482.
  • Gray J. & Thompson P. (1977) Climatic information from 18O/16O analysis of cellulose, lignin and whole wood from tree rings. Nature 270, 708709.
  • Helle G. & Schleser G.H. (2004) Beyond CO2-fixation by Rubisco – an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant, Cell & Environment 27, 367380.
  • Helliker B.R. & Richter S.L. (2008) Subtropical to boreal convergence of tree-leaf temperatures. Nature 454, 511514.
  • Hemming D., Fritts H.C., Leavitt S.W., Wright W., Long A. & Shashkin A. (2001) Modelling tree-ring δ13C. Dendrochronologia 19, 2338.
  • Hoch G., Richter A. & Korner C. (2003) Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment 26, 10671081.
  • Kagawa A., Sugimoto A., Yamashita K. & Abe H. (2005) Temporal photosynthetic carbon isotope signatures revealed in a tree ring through 13CO2 pulse-labelling. Plant, Cell & Environment 28, 906915.
  • Kagawa A., Sugimoto A. & Maximov T.C. (2006) Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytologist 171, 793804.
  • Klein T., Hemming D., Lin T., Grünzweig J.M., Maseyk K., Rotenberg E. & Yakir D. (2005) Association between tree-ring and needle δ13C and leaf gas exchange in Pinus halepensis under semi-arid conditions. Oecologia 144, 4554.
  • Klumpp K., Schäufele R., Lötscher M., Lattanzi F.A., Feneis W. & Schnyder H. (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant, Cell & Environment 28, 241250.
  • Kodama N., Barnard R.L., Salmon Y., et al. (2008) Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 156, 737750.
  • Kozlowski T.T. (1992) Carbohydrates sources and sinks in woody plants. The Botanical Review 58, 107222.
  • Lanigan G.J., Betson N., Griffiths H. & Seibt U. (2008) Carbon Isotope Fractionation during Photorespiration and Carboxylation in Senecio. Plant Physiology 148, 20132020.
  • Leavitt S.W. & Danzer S.R. (1993) Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Analytical Chemistry 65, 8789.
  • Lee X., Kim K. & Smith R. (2007) Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest. Global Biogeochemical Cycles 21, GB3013. doi: 3010.1029/2006GB002871
  • Libby L.M., Pandolfi L.J., Payton P.H., Marshall J., Becker B. & Giertz-Sienbenlist V. (1976) Isotopic tree thermometers. Nature 261, 284288.
  • Loader N.J., Robertson I. & McCarroll D. (2003) Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 395407.
  • Loustau D., Domec J.-C. & Bosc A. (1998) Interpreting the variability of xylem sap flux density within the trunk of maritime pine (Pinus pinaster Aït.): application for calculating the water flux at the tree and stand levels. Annales des Sciences Forestières 55, 2946.
  • McCarroll D. & Loader N.J. (2004) Stable isotopes in tree rings. Quaternary Science Reviews 23, 771801.
  • Majoube M. (1971) Fractionnement en oxygène 18 et en deutérium entre l'eau et sa vapeur. Journal de Chimie Physique 68, 14231436.
  • Maunoury F., Berveiller D., Lelarge C., Pontailler J.-Y., Vanbostal L. & Damesin C. (2007) Seasonal, daily and diurnal variations in the stable carbon isotope composition of carbon dioxide respired by tree trunks in a deciduous oak forest. Oecologia 151, 268279.
  • Merlivat L. (1978) Molecular diffusivities of H216O, HD16O and H218O in gases. Journal of Chemical Physics 69, 28642871.
  • Ogée J. & Brunet Y. (2002) A forest floor model for heat and moisture including a litter layer. Journal of Hydrology 255, 212233.
  • Ogée J., Brunet Y., Loustau D., Berbigier P. & Delzon S. (2003a) MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Global Change Biology 9, 697717.
  • Ogée J., Peylin P., Ciais P., Bariac T., Brunet Y., Berbigier P., Roche C., Richard P., Bardoux G. & Bonnefond J.-M. (2003b) Partioning net ecosystem exchange into net assimilation and respiration using 13CO2 measurements: a cost-effective sampling strategy. Global Biogeochemical Cycles 17, GB1070. doi: 1010.1029/2002GB001995
  • Ogée J., Peylin P., Cuntz M., Bariac T., Brunet Y. & Ciais P. (2004) Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: an error propagation analysis with 13CO2 and CO18O data. Global Biogeochemical Cycles 18, GB2019. doi: 2010.1029/2003GB002166
  • Pate J. & Arthur D. (1998) δ13C analysis of phloem sap carbon: novel means of evaluationg seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globules. Oecologia 117, 301311.
  • Plomion C., Leprovost G. & Stokes A. (2001) Wood formation in trees. Plant Physiol 127, 15131523.
  • Roden J.S., Lin G. & Ehleringer J.R. (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochimica et Cosmochimica Acta 64, 2135.
  • Roeske C.A. & O'Leary M.H. (1984) Carbon isotope effects on the enzyme-catalysed carboxylation of ribulose-1,5-biphosphate. Biochemistry 23, 62756284.
  • Rossi S., Deslauriers A. & Morin H. (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21, 3339.
  • Rossi S., Deslauriers A., Anfodillo T. & Carraro V. (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 112.
  • Saurer M., Aellen K. & Siegwolf R. (1997) Correlating δ13C and δ18O in cellulose of trees. Plant, Cell & Environment 20, 15431550.
  • Scartazza A., Mata C., Matteucci G., Yakir D., Moscatello S. & Brugnoli E. (2005) Comparisons of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia 140, 340351.
  • Scheidegger Y., Saurer M., Bahn M. & Siegwolf R. (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125, 350357.
  • Schiegl W.E. (1974) Climatic significance of deuterium abundance in growth rings of Picea. Nature 251, 582584.
  • Schmidt H.-L. & Gleixner G. (1998) Carbon isotope effects on key reactions in plant metabolism and 13C-patterns in natural compounds. In Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes (ed. H.Griffiths), pp. 1326. BIOS Scientifc Publishers Ltd., Oxford, UK.
  • Schultze B., Wirth C., Linke P., Brand W.A., Kuhlmann I., Horna V. & Schultze E.-D. (2004) Laser ablation-combustion-GC-IRMS – a new method for online analysis of intra-annual variation of δ13C in tree rings. Tree Physiology 24, 11931201.
  • Seibt U., Wingate L., Lloyd J. & Berry J.A. (2007) Nocturnal stomatal conductance effects on the δ18O of foliage gas exchange observed in two forest ecosystems. Tree Physiology 27, 585595.
  • Shu Y., Feng X., Posmentier E.S., Faiia A.M., Ayres M.P., Conkey L.E. & Sonder L.J. (2008) Isotopic studies of leaf water. Part 2: between-age isotopic variations in pine needles. Geochimica et Cosmochimica Acta 72, 51895200.
  • Skomarkova M.V., Vaganov E.A., Mund M., Knohl A., Linke P., Boerner A. & Schulze E.D. (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees – Structure and Function 20, 571586.
  • Sternberg L.D.S.L., De Niro M.J. & Savidge R.A. (1986) Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis. Plant Physiology 82, 423427.
  • Sternberg L., Pinzon M.C., Anderson W.T. & Jahren A.H. (2006) Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects. Plant, Cell & Environment 29, 18811889.
  • Switsur R. & Waterhouse J. (1998) Stable isotopes in tree ring cellulose. In Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes (ed. H.Griffiths), pp. 303322. BIOS Scientific Publishers Ltd., Oxford, UK.
  • Tcherkez G. (2006) How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? Functional Plant Biology 33, 911920.
  • Tcherkez G., Farquhar G.D., Badeck F.-W. & Ghashghaie J. (2004) Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Functional Plant Biology 31, 857877.
  • Vaganov E.A., Anchukaitis K.J. & Evans M.N. (2009) How well understood are the processes that create dendroclimatic records? In Dendroclimatology: Progress and Prospects (eds M.K.Hugues, T.W.Swetman & H.Diaz), Chapter 3. Springer-Verlag, New York, NY, USA.
  • Walcroft A.S., Silvester W.B., Whitehead D. & Kelliher F.M. (1997) Seasonal changes in stable carbon isotope ratios within annual rings of Pinus radiata reflect environmental regulation of growth processes. Australian Journal of Plant Physiology 24, 5768.
  • Wang X.F. & Yakir D. (1995) Temporal and spatial variations in the oxygen-18 content of leaf water in different plant species. Plant, Cell & Environment 18, 13771385.
  • Wang X.-F., Yakir D. & Avishai M. (1998) Non-climatic variations in the oxygen isotopic compositions of plants. Global Change Biology 4, 835849.
  • Warren C.R. (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. Journal of Experimental Botany 59, 14751487.
  • Welp L.R., Lee X., Kim K., Griffis T.J., Billmark K.A. & Baker J.M. (2008) δ18O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant, Cell & Environment 31, 12141228.
  • Whetten R. & Sederoff R. (1997) Lignin biosynthesis. The Plant Cell 7, 10011017.
  • Wilson A.T. & Grinsted M.J. (1977) 12C/13C in cellulose and lignin as palaeothermometers. Nature 265, 133135.
  • Yakir D. (1998) Oxygen-18 of leaf water: a crossroad for plant-associated isotopic signals. In Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes (ed. H.Griffiths), pp. 147168. BIOS Scientific Publishers Ltd., Oxford, USA.