SEARCH

SEARCH BY CITATION

REFERENCES

  • Apel K. & Hirt H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373399.
  • Barrière Y., Riboulet C., Méchin V., Maltese S., Pichon M., Cardinal A.J., Lapierre C., Lübberstedt T. & Martinant J.-P. (2007) Genetics and genomics of lignification in grass cell walls based on maize as model species. Genes, Genomes and Genomics 1, 133156.
  • Bassani M., Neumann P.M. & Gepstein S. (2004) Differential expression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Molecular Biology 56, 367380.
  • Belenghi B., Acconcia F., Trovato M., Perazzolli M., Bocedi A., Polticelli F., Ascenzi P. & Delledonne M. (2003) AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. European Journal of Biochemistry 270, 25932604.
  • Besseau S., Hoffmann L., Geoffroy P., Lapierre C., Pollet B. & Legrand M. (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. The Plant Cell 19, 148162.
  • Bouché N. & Fromm H. (2004) GABA in plants: just a metabolite? Trends in Plant Science 9, 110115.
  • Bustos D., Lascano R., Villasuso A.L., Machado E., Senn M.E., Córdoba A. & Taleisnik E. (2008) Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2•− levels. Annals of Botany 102, 551559.
  • Davies D.D. & Asker H. (1983) Synthesis of oxalic acid by enzymes from lettuce leaves. Plant Physiology 72, 134138.
  • Dhaubhadel S., Gijzen M., Moy P. & Farhangkhoee M. (2007) Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiology 143, 326338.
  • Erickson R.O. & Silk W.K. (1980) The kinematics of plant growth. Scientific American 242, 134151.
  • Fan L. & Neumann P.M. (2004) The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. Plant Physiology 135, 22912300.
  • Fan L., Linker R., Gepstein S., Tanimoto E., Yamamoto R. & Neumann P.M. (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiology 140, 603612.
  • Foreman J., Demidchik V., Bothwell J.H., et al. (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442446.
  • Fry S.C. (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochemical Journal 332, 507515.
  • Gechev T.S., Van Breusegem F., Stone J.M., Denev I. & Laloi C. (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28, 10911101.
  • Goodwin R.H. (1972) Studies on roots. V. Effects of indoleacetic acid on the standard root growth pattern of Phleum pretense. Botanical Gazette 133, 224229.
  • Green M.A. & Fry S.C. (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433, 8387.
  • Guan L.M., Zhao J. & Scandalios J.G. (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. The Plant Journal 22, 8795.
  • Hejnovicz Z. (1961) The response of different parts of the cell elongation zone in root to external β-indolylacetic acid. Acta Societatis Botanicorum Poloniae 30, 2542.
  • Ishikawa H. & Evans M.L. (1993) The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiology 102, 12031210.
  • Ithal N. & Reddy A.R. (2004) Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Science 166, 15051515.
  • Iturbe-Ormaetxe I., Escuredo P.R., Arrese-Igor C. & Becana M. (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology 116, 173181.
  • Jiang M. & Zhang J. (2002) Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215, 10221030.
  • Jovanovic S.V., Steenken S., Tosic M., Marjanovic B. & Simic M.G. (1994) Flavonoids as antioxidants. Journal of the American Chemical Society 116, 48464851.
  • Kamisaka S., Takeda S., Takahashi K. & Shibata K. (1990) Diferulic and ferulic acid in the cell wall of Avena coleoptiles: their relationships to mechanical properties of the cell wall. Physiologia Plantarum 78, 17.
  • Kaul S., Sharma S.S. & Mehta I.K. (2008) Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34, 315320.
  • Kruk I., Aboul-Enein H.Y., Michalska T., Lichszteld K. & Kladna A. (2005) Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein. Luminescence 20, 8189.
  • Kukavica B., Mojović M. Vučinić Ž., Maksimović V., Takahama U. & Veljović Jovanović S. (2009) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant and Cell Physiology 50, 304317.
  • Liang B.M., Sharp R.E. & Baskin T.I. (1997) Regulation of growth anisotropy in well-watered and water-stressed maize roots. I. Spatial distribution of longitudinal, radial, and tangential expansion rates. Plant Physiology 115, 101111.
  • Liszkay A., Kenk B. & Schopfer P. (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217, 658667.
  • Liszkay A., Van Der Zalm E. & Schopfer P. (2004) Production of reactive oxygen intermediates (O2•−, H2O2, and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiology 136, 31143123.
  • Lobreaux S., Hardy T. & Briat J.F. (1993) Abscisic acid is involved in the iron-induced synthesis of maize ferritin. The EMBO Journal 12, 651657.
  • Mathesius U., Schlaman H.R.M., Spaink H.P., Sautter C., Rolfe B.G. & Djordjevic M.A. (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. The Plant Journal 14, 2334.
  • Miflin B.J. & Habash D.Z. (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany 53, 979987.
  • Moeder W., Barry C.S., Tauriainen A.A., Betz C., Tuomainen J., Utriainen M., Grierson D., Sandermann H., Langebartels C. & Kangasjarvi J. (2002) Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiology 130, 19181926.
  • Moller I.M., Jensen P.E. & Hansson A. (2007) Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58, 459481.
  • Moons A. (2005) Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitamins and Hormones 72, 155202.
  • Müller K., Linkies A., Vreeburg R.A.M., Fry S.C., Krieger-Liszkay A. & Luebner-Metzger G. (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiology 150, 18551865.
  • Munns R. (1988) Why measure osmotic adjustment? Australian Journal of Plant Physiology 15, 717726.
  • Nerya O., Musa R., Khatib S., Tamir S. & Vaya J. (2004) Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 65, 13891395.
  • Ober E.S. & Sharp R.E. (1994) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. I. Requirement for increased levels of abscisic acid. Plant Physiology 105, 981987.
  • Ober E.S. & Sharp R.E. (2003) Electrophysiological responses of maize roots to low water potentials: relationship to growth and ABA accumulation. Journal of Experimental Botany 54, 813824.
  • Ober E.S. & Sharp R.E. (2007) Regulation of root growth responses to water deficit. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops (eds M.A.Jenks, P.M.Hasegawa & S.M.Jain) pp. 3353. Springer, Dortrecht, the Netherlands.
  • Overmyer K., Tuominen H., Kettunen R., Betz C., Langebartels C., Sandermann H. Jr & Kangasjarvi J. (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. The Plant Cell 12, 18491862.
  • Passardi F., Penel C. & Dunand C. (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science 9, 534540.
  • Poroyko V., Hejlek L.G., Spollen W.G., Springer G.K., Nguyen H.T., Sharp R.E. & Bohnert H.J. (2005) The maize root transcriptome by serial analysis of gene expression. Plant Physiology 138, 17001710.
  • Poroyko V., Spollen W.G., Hejlek L.G., Hernandez A.G., LeNoble M.E., Davis G., Nguyen H.T., Springer G.K., Sharp R.E. & Bohnert H.J. (2007) Comparing regional transcript profiles from maize primary roots under well-watered and low water potential conditions. Journal of Experimental Botany 58, 279289.
  • Ramputh A.I., Arnason J.T., Cass L. & Simmonds J.A. (2002) Reduced herbivory of the European corn borer (Ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. Plant Science 162, 431440.
  • Ribaut J.M. & Pilet P.E. (1994) Water stress and indol-3yl-acetic acid content of maize roots. Planta 193, 502507.
  • Riboulet C., Guillaumie S., Méchin V., et al. (2009) Kinetics of phenylpropanoid gene expression in maize growing internodes: Relationships with cell wall deposition. Crop Science 49, 211223.
  • Saab I.M., Sharp R.E., Pritchard J. & Voetberg G.S. (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiology 93, 13291336.
  • Saab I.N., Sharp R.E. & Pritchard J. (1992) Effect of inhibition of abscisic acid accumulation on the spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials. Plant Physiology 99, 2633.
  • Schopfer P. & Liszkay A. (2006) Plasma membrane-generated reactive oxygen intermediates and their role in cell growth of plants. BioFactors 28, 7381.
  • Seki M., Ishida J., Narusaka M., et al. (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional & Integrative Genomics 2, 282291.
  • Sharp R.E. (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, Cell & Environment 25, 211222.
  • Sharp R.E. & Davies W.J. (1979) Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 147, 4349.
  • Sharp R.E. & Davies W.J. (1989) Regulation of growth and development of plants growing with a restricted supply of water. In Plants under Stress (eds H.G.Jones, T.L.Flowers & M.B.Jones) pp. 7193. Cambridge University Press, London, UK.
  • Sharp R.E., Silk W.K. & Hsiao T.C. (1988) Growth of the maize primary root at low water potential. I. Spatial distribution of expansive growth. Plant Physiology 87, 5057.
  • Sharp R.E., Hsiao T.C. & Silk W.K. (1990) Growth of the maize primary root at low water potentials. II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology 93, 13371346.
  • Sharp R.E., Wu Y., Voetberg G.S., Saab I.N. & LeNoble M.E. (1994) Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. Journal of Experimental Botany 45, 743751.
  • Sharp R.E., Poroyko V., Hejlek L.G., Spollen W.G., Springer G.K., Bohnert H.J. & Nguyen H.T. (2004) Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany 55, 23432351.
  • Silk W.K., Lord E.M. & Eckard K.J. (1989) Growth patterns inferred from anatomical records. Plant Physiology 90, 708713.
  • Solomon M., Belenghi B., Delledonne M., Menachem E. & Levine A. (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. The Plant Cell 11, 431444.
  • Spollen W.G. & Sharp R.E. (1991) Spatial distribution of turgor and root growth at low water potentials. Plant Physiology 96, 438443.
  • Spollen W.G., Sharp R.E., Saab I.N. & Wu Y. (1993) Regulation of cell expansion in roots and shoots at low water potentials. In Water Deficits: Plant Responses from Cell to Community (eds J.A.C.Smith & H.Griffiths) pp. 3752. BIOS Scientific Publishers, Oxford, UK.
  • Spollen W.G., LeNoble M.E., Samuels T.D., Bernstein N. & Sharp R.E. (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiology 122, 967976.
  • Spollen W.G., Tao W., Valliyodan B., et al. (2008) Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biology 8, 32.
  • Subramanian S., Stacey G. & Yu O. (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. The Plant Journal 48, 261273.
  • Verslues P.E. & Sharp R.E. (1999) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant Physiology 119, 13491360.
  • Voetberg G.S. & Sharp R.E. (1991) Growth of the maize primary root at low water potentials. III. Role of increased proline deposition in osmotic adjustment. Plant Physiology 96, 11251130.
  • Wakabayashi K., Hoson T. & Kamisaka S. (1997a) Osmotic stress suppresses cell wall stiffening and the increase in cell wall-bound ferulic and diferulic acids in wheat coleoptiles. Plant Physiology 113, 967973.
  • Wakabayashi K., Hoson T. & Kamisaka S. (1997b) Abscisic acid suppresses the increases in cell wall-bound ferulic and diferulic acid levels in dark-grown wheat (Triticum aestivum L.) coleoptiles. Plant and Cell Physiology 38, 811817.
  • Walter A., Silk W.K. & Schurr U. (2009) Environmental effects on spatial and temporal patterns of leaf and root growth. Annual Review of Plant Biology 60, 279304.
  • Van Der Weele C.M., Spollen W.G., Sharp R.E. & Baskin T.I. (2000) Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. Journal of Experimental Botany 51, 15551562.
  • Westgate M.E. & Boyer J.S. (1985) Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials. Planta 164, 540549.
  • Whetten R.W., Mackay J.J. & Sederoff R.R. (1998) Recent advances in understanding lignin biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 49, 585609.
  • Winkel-Shirley B. (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126, 485493.
  • Wu Y., Spollen W.G., Sharp R.E., Hetherington P.R. & Fry S.C. (1994) Root growth maintenance at low water potentials: increased activity of xyloglucan endotransglycosylase and its possible regulation by abscisic acid. Plant Physiology 106, 607615.
  • Wu Y., Sharp R.E., Durachko D.M. & Cosgrove D.J. (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiology 111, 765772.
  • Wu Y., Thorne E.T., Sharp R.E. & Cosgrove D.J. (2001) Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiology 126, 14711479.
  • Yamaguchi M., Valliyodan B., Zhang J., LeNoble M.E., Yu O., Rogers E.E., Nguyen H.T. & Sharp R.E. (2009) Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant, Cell & Environment (in press).
  • Zhu J., Alvarez S., Marsh E.L., et al. (2007)Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiology 145, 15331548.