SEARCH

SEARCH BY CITATION

REFERENCES

  • Alexandre C., Möller-Steinbach Y., Schönrock N., Gruissem W. & Hennig L. (2009) Arabidopsis msi1 is required for negative regulation of the response to drought stress. Molecular Plant 2, 675687.
  • Ascenzi R. & Gantt J.S. (1997) A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Molecular Biology 34, 629641.
  • Ascenzi R. & Gantt J.S. (1999) Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. Plant Molecular Biology 41, 159169.
  • Bartels D. & Sunkar R. (2005) Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24, 2358.
  • Bassett A., Cooper S., Wu C. & Travers A. (2009) The folding and unfolding of eukaryotic chromatin. Current Opinion in Genetics & Development 19, 159165.
  • Benhamed M., Bertrand C., Servet C. & Zhou D.X. (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. The Plant Cell 18, 28932903.
  • Bertrand C., Bergounioux C., Domenichini S., Delarue M. & Zhou D.X. (2003) Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. Journal of Biological Chemistry 278, 2824628251.
  • Bianchi M.E. & Agresti A. (2005) HMG proteins: dynamic players in gene regulation and differentiation. Current Opinion in Genetics & Development 15, 496506.
  • Chen Z., Zhang H., Jablonowski D., Zhou X., Ren X., Hong X., Schaffrath R., Zhu J.K. & Gong Z. (2006) Mutations in ABO1/ELO2, a subunit of Holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Molecular and Cellular Biology 26, 69026912.
  • Chinnusamy V. & Zhu J.K. (2009) Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology 12, 133139.
  • Chinnusamy V., Gong Z. & Zhu J.K. (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. Journal of Integrative Plant Biology 50, 11871195.
  • Choi C.S. & Sano H. (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Molecular Genetics and Genomics 277, 589600.
  • Choi H., Hong J.H., Ha J., Kang J.Y. & Kim S.Y. (2000) ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry 275, 17231730.
  • Clark D.J. & Felsenfeld G. (1991) Formation of nucleosomes on positively supercoiled DNA. EMBO Journal 10, 387395.
  • Demetriou K., Kapazoglou A., Tondelli A., Francia E., Stanca M.A., Bladenopoulos K. & Tsaftaris A.S. (2009) Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. Physiologia Plantarum 136, 358368.
  • Earley K.W., Shook M.S., Brower-Toland B., Hicks L. & Pikaard C.S. (2007) In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. The Plant Journal 52, 615626.
  • Eberharter A. & Becker P.B. (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Reports 3, 224229.
  • Fischle W., Wang Y. & Allis C.D. (2003) Histone and chromatin cross-talk. Current Opinion in Cell Biology 15, 172183.
  • Fry C.J. & Peterson C.L. (2001) Chromatin remodeling enzymes: who's on first? Current Biology 11, 185195.
  • Fu W., Wu K. & Duan J. (2007) Sequence and expression analysis of histone deacetylases in rice. Biochemical and Biophysical Research Communications 356, 843850.
  • Fujita Y., Fujita M., Satoh R., Maruyama K., Parvez M.M., Seki M., Hiratsu K., Ohme-Takagi M., Shinozaki K. & Yamaguchi-Shinozaki K. (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell 17, 34703488.
  • Fukuda H., Sano N., Muto S. & Horikoshi M. (2006) Simple histone acetylation plays a complex role in the regulation of gene expression. Briefings in Functional Genomics and Proteomics 5, 190208.
  • Grasser K.D., Launholt D. & Grasser M. (2007) High mobility group proteins of the plant HMGB family: dynamic chromatin modulators. Biochimica et Biophysica Acta 1769, 346357.
  • Graziano V., Gerchman S.E., Schneider D.K. & Ramakrishnan V. (1994) Histone H1 is located in the interior of the chromatin 30-nm filament. Nature 368, 351354.
  • Henderson I.R. & Jacobsen S.E. (2007) Epigenetic inheritance in plants. Nature 447, 418424.
  • Ivanchenko M., Zlatanova J. & Van Holde K. (1997) Histone H1 preferentially binds to superhelical DNA molecules of higher compaction. Biophysical Journal 72, 13881395.
  • Izzo A., Kamleniarz K. & Schneider R. (2008) The histone H1 family: specific members, specific functions? Biological Chemistry 389, 333343.
  • Jerzmanowski A. (2007) SWI/SNF chromatin remodeling and linker histones in plants. Biochimica et Biophysica Acta 1769, 330345.
  • Kadonaga J.T. (1998) Eukaryotic transcription: an interlaced network of transcription factors and chromatin-remodeling machines. Cell 92, 307313.
  • Kim J.M., To T.K., Ishida J., Morosawa T., Kawashima M., Matsui A., Toyoda T., Kimura H., Shinozaki K. & Seki M. (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiology 49, 15801588.
  • Kornet N. & Scheres B. (2009) Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis. The Plant Cell 21, 10701079.
  • Kreps J.A., Wu Y., Chang H.S., Zhu T., Wang X. & Harper J.F. (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology 130, 21292141.
  • Kwak K.J., Kim J.Y., Kim Y.O. & Kang H. (2007) Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress. Plant & Cell Physiology 48, 221231.
  • Kwon C.S., Lee D., Choi G. & Chung W. (2009) Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. The Plant Journal 60, 112121.
  • Lee B.H., Henderson D.A. & Zhu J.K. (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. The Plant Cell 17, 31553175.
  • Lildballe D.L., Pedersen D.S., Kalamajka R., Emmersen J., Houben A. & Grasser K.D. (2008) The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. Journal of Molecular Biology 384, 921.
  • Liu X., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. & Shinozaki K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell 10, 13911406.
  • Long J.A., Ohno C., Smith Z.R. & Meyerowitz E.M. (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312, 15201523.
  • Matsui A., Ishida J., Morosawa T., et al. (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant & Cell Physiology 49, 11351149.
  • Millar C.B. & Grunstein M. (2006) Genome-wide patterns of histone modifications in yeast. Nature Reviews Molecular Cell Biology 7, 657666.
  • Mittler R., Kim Y., Song L., Coutu J., Coutu A., Ciftci-Yilmaz S., Lee H., Stevenson B. & Zhu J.K. (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters 580, 65376542.
  • Mlynárová L., Nap J.P. & Bisseling T. (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. The Plant Journal 51, 874885.
  • Molinier J., Ries G., Zipfel C. & Hohn B. (2006) Transgeneration memory of stress in plants. Nature 442, 10461049.
  • Pandey R., Müller A., Napoli C.A., Selinger D.A., Pikaard C.S., Richards E.J., Bender J., Mount D.W. & Jorgensen R.A. (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin among multicellular eukaryotes. Nucleic Acids Research 30, 50365055.
  • Pavet V., Quintero C., Cecchini N.M., Rosa A.L. & Alvarez M.E. (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Molecular Plant–Microbe Interactions 19, 577587.
  • Peterson C.L. & Workman J.L. (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Current Opinion in Genetics & Development 10, 187192.
  • Reyes J.C., Hennig L. & Gruissem W. (2002) Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiology 130, 10901101.
  • Rios G., Gagete A.P., Castillo J., Berbel A., Franco L. & Rodrigo I. (2007) Abscisic acid and desiccation-dependent expression of a novel putative SNF5-type chromatin-remodeling gene in Pisum sativum. Plant Physiology and Biochemistry 45, 427435.
  • Saez A., Rodrigues A., Santiago J., Rubio S. & Rodriguez P.L. (2008) HAB1–SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. The Plant Cell 20, 29722988.
  • Sarnowski T.J., Rios G., Jasik J., et al. (2005) SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. The Plant Cell 17, 24542472.
  • Schwabish M.A. & Struhl K. (2007) The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Molecular & Cellular Biology 27, 69876995.
  • Scippa G.S., Griffiths A., Chiatante D. & Bray E.A. (2000) The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress. Planta 211, 173181.
  • Scippa G.S., Di Michele M., Onelli E., Patrignani G., Chiatante D. & Bray E.A. (2004) The histone-like protein H1-S and the response of tomato leaves to water deficit. Journal of Experimental Botany 55, 99109.
  • Seki M., Narusaka M., Ishida J., et al. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. The Plant Journal 31, 279292.
  • Servet C., Benhamed M., Latrasse D., Kim W., Delarue M. & Zhou D.X. (2008) Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis. Biochimica et Biophysica Acta 1779, 376382.
  • Sokol A., Kwiatkowska A., Jerzmanowski A. & Prymakowska-Bosak M. (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227, 245254.
  • Sridha S. & Wu K. (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. The Plant Journal 46, 124133.
  • Stemmer C., Leeming D.J., Franssen L., Grimm R. & Grasser K.D. (2003) Phosphorylation of maize and Arabidopsis HMGB proteins by protein kinase CK2alpha. Biochemistry 42, 35033508.
  • Stockinger E.J., Gilmour S.J. & Thomashow M.F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America 94, 10351040.
  • Stockinger E.J., Mao Y., Regier M.K., Triezenberg S.J. & Thomashow M.F. (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Research 29, 15241533.
  • Strahl B.D. & Allis C.D. (2000) The language of covalent histone modifications. Nature 403, 4145.
  • Sung S. & Amasino R.M. (2005) Remembering winter: toward a molecular understanding of vernalization. Annual Review of Plant Biology 56, 491508.
  • Taji T., Ohsumi C., Iuchi S., Seki M., Kasuga M., Kobayashi M., Yamaguchi-Shinozaki K. & Shinozaki K. (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal 29, 417426.
  • Tsuji H., Saika H., Tsutsumi N., Hirai A. & Nakazono M. (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiology 47, 9951003.
  • Tsukiyama T. (2002) The in vivo functions of ATP-dependent chromatin-remodelling factors. Nature Reviews Molecular Cell Biology 3, 422429.
  • Umezawa T., Fujita M., Fujita Y., Yamaguchi-Shinozaki K. & Shinozaki K. (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology 17, 113122.
  • Uno Y., Furihata T., Abe H., Yoshida R., Shinozaki K. & Yamaguchi-Shinozaki K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America 97, 1163211637.
  • Verbsky L. & Richards E.J. (2001) Chromatin remodeling in plants. Current Opinion in Plant Biology 4, 494500.
  • Vlachonasios K.E., Thomashow M.F. & Triezenberg S.J. (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. The Plant Cell 15, 626638.
  • Wang X., Elling A.A., Li X., Li N., Peng Z., He G., Sun H., Qi Y., Liu X.S. & Deng X.W. (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. The Plant Cell 21, 10531069.
  • Wiśniewski J.R., Szewczuk Z., Petry I., Schwanbeck R. & Renner U. (1999) Constitutive phosphorylation of the acidic tails of the high mobility group 1 proteins by casein kinase II alters their conformation, stability, and DNA binding specificity. Journal of Biological Chemistry 274, 2011620122.
  • Wu J. & Grunstein M. (2000) 25 Years after the nucleosome model: chromatin modifications. Trends in Biochemical Sciences 25, 619623.
  • Yamaguchi-Shinozaki K. & Shinozaki K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature or high-salt stress. The Plant Cell 6, 251264.
  • Yamaguchi-Shinozaki K. & Shinozaki K. (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology 57, 781803.
  • Zhang H., Clarenz O., Cokus S., Bernatavichute V.V., Pellegrini M., Goodrich J. & Jacobsen S.E. (2007a) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biology 5, e129.
  • Zhang K., Sridhar V.V., Zhu J., Kapoor A. & Zhu J.K. (2007b) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS ONE 2, e1210.
  • Zhou X., Chen Z., Hua D., Zhou Z. & Gong Z. (2009) Elongator mediates ABA responses, oxidative stress resistance, and anthocyanin biosynthesis in Arabidopsis. The Plant Journal 60, 7990.
  • Zhu J.K. (2008) Epigenome sequencing comes of age. Cell 133, 395397.
  • Zhu J.H., Jeong J.C., Zhu Y., et al. (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proceedings of the National Academy of Sciences of the United States of America 105, 49454950.