SEARCH

SEARCH BY CITATION

REFERENCES

  • Araus J.L., Bort J., Steduto P., Villegas D. & Royo C. (2003) Breeding cereals for Mediterranean conditions: ecophysiology clues for biotechnology application. Annals of Applied Biology 142, 129141.
  • Aronson J.A. (1989) HALOPHA Database of Salt Tolerant Plants of the World. Office of Arid Land Studies, University of Arizona, Tucson, AZ, USA. 77.
  • Ashraf M., Ozturk M. & Athar H.R. (2009) Salinity and Water Stress. Improving Crop Efficiency. Springer-Verlag, Berlin.
  • Baek H.J., Beharav A. & Nevo E. (2003) Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theoretical and Applied Genetics 106, 397410.
  • Bahieldin A., Mahfouz H.T., Eissa H.F., Saleh O.M., Ramadan A.M., Ahmed I.A., Dyer W.E., El-Itriby H.A. & Madkour M.A. (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiologia Plantarum 123, 421427.
  • Baum M., Grando S., Backes G., Jahoor A., Sabbagh A. & Ceccarelli S. (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’H. spontaneum 41-1. Theoretical and Applied Genetics 107, 12151225.
  • Bengough A.G., Gordon D.C., Al-Menaie H., Ellis R.P., Allan D., Keith R., Thomas W.T.B. & Forster B.P. (2004) Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant and Soil 262, 6370.
  • Blum A. (1988) Plant Breeding for Stress Environments. CRC Press, Boca Raton, FL, USA.
  • Blum A. (2005) Drought resistance, water use efficiency and yield potential – are they compatible, dissonant or mutually exclusive? Australian Journal of Agricultural Research 56, 11591168.
  • Brini F., Gaxiola R., Berkowitz G. & Masmoudi K. (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiology and Biochemistry 43, 347354.
  • Byrt C., Platten J.D., Spielmeyer W., James R.A., Lagudah E.S., Dennis E.S., Tester M. & Munns R. (2007) HKT1; 5-like cation transporter linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiology 143, 19181928.
  • Cakmak I., Torun A., Millet E., Feldman M., Fahima T., Korol A.B., Nevo E., Braun H.J. & Ozkan H. (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science and Plant Nutrition 50, 10471054.
  • Charpentier A. (1992) Production of disomic addition lines and partial amphiploids of Thinopyrum junceumon wheat. Comptes Rendusdel' Academiedes Sciences 315, 551557.
  • Chen G. (2005) Drought Resistance in Wild Barley, Hordeum Spontaneum, from Israel: Physiology, Gene Identification, and QTL Mapping. Ph.D. Dissertation, Institute of Evolution, University of Haifa, Haifa, Israel.
  • Chen G., Komatsuda T., Pourkheirandish M., Sameri M., Sato K., Krugman T., Fahima T., Korol A.B. & Nevo E. (2009) Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum spontaneum). Breeding Science 59, 2126.
  • Chen G., Krugman T., Fahima T., Korol A.B. & Nevo E. (2002) Comparative study of morphological and physiological traits related to drought resistance between xeric and mesic Hordeum spontaneum lines in Israel. Barley Genetic Newsletter 32, 2233.
  • Chen G., Krugman T., Fahima T., Zhang F., Korol A.B. & Nevo E. (2004a) Differential patterns of germination and desiccation tolerance of mesic and xeric wild barley (Hordeum spontaneum) in Israel. Journal of Arid Environment 56, 95105.
  • Chen G., Suprunova T., Krugman T., Fahima T. & Nevo E. (2004b) Ecogeographic and genetic determinants of kernel weight and color of wild barley (Hordeum spontaneum) populations in Israel. Seed Science Research 14, 137146.
  • Chen G., Sagi M., Weining S., Krugman T., Fahima T., Korol A.B. & Nevo E. (2004c) Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta 219, 684693.
  • Chen S.Y., Xia G.M., Quan T.Y., Xiang F.N., Yin J. & Chen H.M. (2004d) Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Science 167, 773779.
  • Choo T.M. (2002) Genetic resources of Tibetan barley in China. Crop Science 42, 17591760.
  • Close T.J., Dong-Woog C., Salvi S., Tuberosa R., Ryabushkina N. & Nevo E. (2000) Allelic variation at loci encoding dehydrins in wild and cultivated barley. Plant and Animal Genome VIII, 912. San Diego, January 2000 (Abstract).
  • Colmer T.D., Flowers T.J. & Munns R. (2006) Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany 57, 10591078.
  • Cramer G.R. (2003) Differential effects of salinity on leaf elongation kinetics of three grass species. Plant and Soil 253, 233244.
  • Cronin J.K., Bundock P.C., Henry R.J. & Nevo E. (2007) Adaptive climatic molecular evolution in wild barley at the lsa defense locus. Proceedings of the National Academy of Sciences of the United States of America 104, 27732778.
  • Datta K.S., Kumar A., Varma S.K. & Angrish R. (1995) Differentiation of chloride and sulphate salinity on the basis of ionic distribution in genetically diverse cultivars of wheat. Journal of Plant Nutrition 18, 21992212.
  • Dewey D.R. (1960) Salt tolerance of twenty five strains of Agropyron. Agronomic Journal 52, 631635.
  • Diab A.A., Teulat B., This D., Ozturk N.Z., Benscher D. & Sorrells M.E. (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theoretical and Applied Genetic 109, 14171425.
  • Dong P., Wei Y.M., Chen G.Y., Li W., Wang J.R., Nevo E. & Zheng Y.L. (2009) EST-SSR diversity correlated with ecological and genetic factors of wild emmer wheat in Israel. Hereditas 146, 110.
  • Dreccer M.F., Ogbonnaya F.C. & Borgognone M.G. (2004) Sodium exclusion in primary synthetic wheats. In Proceedings of the 54th Australian Cereal Chemistry Conference and 11th Wheat Breeders Assembly, September, 2004 (eds C.K.Black, J.F.Panozzo & G.J.Rebetzke), pp. 118121. Canberra Cereal Chemistry Division, RACI, Canberra.
  • Dreccer M.F., Borgognone G., Ogbonnaya F.C., Trethowan R.M. & Winter B. (2007) CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crops Research 100, 218228.
  • Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K. & Yamaguchi-Shinozaki K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal 33, 751763.
  • Dvôrák J. & Ross K. (1986) Expression of tolerance of Na+, K+, Mg2+, Cl-, and SO42− ions and sea water in the amphiploid of Triticum aestivum × Elytrigia elongata. Crop Science 26, 658660.
  • Dvôrák J., Edge M. & Ross K. (1988) On the evolution of the adaptation of Lophopyrum-elongatum to growth in saline environments. Proceedings of the National Academy of Sciences of the United States of America 85, 38053809.
  • Ellis R., Foster B., Handley L., Gordon D., Russell J. & Powell W. (2000) Wild barley: a source of genes for crop improvement in the 21st century? Journal of Experimental Botany 51, 917.
  • Ellis R.P., Forster B.P., Gordon D.C., et al. (2002) Phenotype/genotype associations for yield and salt tolerance in a mapping population segregating for two dwarfing genes. Journal of Experimental Botany 53, 114.
  • Ellis M.H., Rebetzke G.J., Azanza F., Richards R.A. & Spielmeyer W. (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theoretical and Applied Genetics 111, 423430.
  • Fahima T., Sun G.L., Beharav A., Krugman T., Beiles A. & Nevo E. (1999) RAPD polymorphism of wild emmer wheat population, Triticum dicoccoides, in Israel. Theoretical and Applied Genetics 98, 434447.
  • Fahima T., Röder M.S., Wendehake K., Kirzhner V.M. & Nevo E. (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theoretical and Applied Genetics 104, 1729.
  • Farooq S. (2004) Salt tolerance in Aegilops species: a success story from research and production to large-scale utilization of salt-tolerant wheats. In Prospects of Saline Agriculture in the Arabian Peninsula (eds F.S.Taha, S.Ismaial & A.Jaradat), pp. 121134. Amherst Scientific Publishers, Amherst, MA.
  • Farooq S. (2009) Chapter 7 Triticeae: the ultimate source of abiotic stress tolerance improvement in wheat. In Salinity and Water Stress (eds. M.Ashraf, et al.), pp. 6571. Springer-Verlag, Berlin.
  • Farooq S. & Azam F. (2001) Production of low input and stress tolerant wheat germplasm through the use of biodiversity residing in the wild relatives. Hereditas 135, 211215.
  • Farooq S., Niazi M.L.K., Iqbal N. & Shah T.M. (1989) Salt tolerance potential of wild resources of the tribe Triticeae. II. Screening of species of the genus Aegilops. Plant and Soil 119, 255260.
  • Farooq S., Iqbal N., Asghar M. & Shah T.M. (1992) Intergeneric hybridization for wheat improvement. VI. Production of salt-tolerant germplasm through crossing wheat (Triticum aestivum L.) with Aegilops cylindrica and its significance in practical agriculture. Journal of Genetics and Breeding 46, 125132.
  • Farooq S., Asghar M., Iqbal N., Askari E., Arif M. & Shah T.M. (1995) Production of salt-tolerant wheat germplasm through crossing cultivated wheat with Aegilops cylindrica-II. Field evaluation of salt-tolerant germplasm. Cereal Research Communications 23, 275282.
  • Feldman M. & Sears E.R. (1981) The wild genetic resources of wheat. Scientific American 244, 102112.
  • Feuillet C. & Eversole K. (2007) Physical mapping of the wheat genome: a coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Israel Journal of Plant Science 55, 307313.
  • Feuillet C., Langridge P. & Waugh R. (2008) Cereal breeding takes a walk on the wild side. Trend in Genetics 24, 2432.
  • Forster B.P., Ellis R.P., Moir J., et al. (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Annals of Applied Biology. 144, 157168.
  • Forster B. & Miller T. (1985) A 5B deficient hybrid between Triticum aestivum and Agropyron junceum. Cereal Research Communications 13, 9395.
  • Forster B.P., Gorham J. & Miller T.E. (1987) Salt tolerance of an amphiploid between Triticum aestivum and Agropyron junceum. Plant Breeding 98, 18.
  • Forster B.P., Phillips M.S., Miller T.E., Baird E. & Powell W. (1990) Chromosome location of genes controlling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity 65, 99107.
  • Fu Y.B. & Somers D. (2009) Genome-wide reduction of genetic diversity in wheat breeding. Crop Science 49, 161168.
  • Gao S.Q., Chen M., Xia L.Q., Xiu H.J., Xu Z.S., Li L.C., Zhao C.P., Cheng X.G. & Ma Y.Z. (2009) A cotton (Gossypium hirsutum) DREB-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Report 28, 301311.
  • Garthwaite A.J., Von Bothmer R. & Colmer T.D. (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. Journal of Experimental Botany 56, 23652378.
  • Gorham J. (1990a) Salt tolerance in the Triticeae: K+/Na+ discrimination in Aegilops species. Journal of Experimental Botany 41, 615621.
  • Gorham J. (1990b) Salt tolerance in the Triticeae: K+/Na+ discrimination in synthetic hexaploid wheats. Journal of Experimental Botany 41, 623627.
  • Gorham J., McDonnell E. & Wyn Jones R.G. (1984) Salt tolerance in the Triticeae: Leymus sabulosus. Journal of Experimental Botany 35, 12001209.
  • Gorham J., McDonnell E., Budrewicz E. & Wyn Jones R.G. (1985) Salt tolerance in the Triticeae: growth and solute accumulation in leaves of Thinopyrum bessarabicum. Journal of Experimental Botany 36, 10211031.
  • Gorham J., Budrewicz E., McDonnell E. & Wyn Jones R.G. (1986) Salt tolerance in the Triticeae: salinity induced changes in the leaf solute composition of some perennial Triticeae. Journal of Experimental Botany 37, 11141128.
  • Gorham J., Hardy C., Wyn Jones R.G., Joppa L.R. & Law C.N. (1987) Chromosomal location of a K+/Na+ discrimination character in the D genome of wheat. Theoretical and Applied Genetics 74, 584588.
  • Gorham J., Bristol A., Young E.M. & Wyn Jones R.G. (1991) The presence of the enhanced K+/Na+ discrimination trait in diploid Triticum species. Theoretical and Applied Genetics 82, 729736.
  • Grando S. & Ceccarelli S. (1995) Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgate ssp. vulgare) barley. Euphytica 86, 7380.
  • Greipsson S. & Davy A.J. (1996) Sand accretion and salinity as constraints on the establishment of Leymus arenarius for land reclamation in Iceland. Annals of Botany 78, 611618.
  • Griffith T.M. & Watson M.A. (2005) Stress avoidance in a common annual: reproductive timing is important for local adaptation and geographic distribution. Journal of Evolutionary Biology 18, 16011612.
  • Guo P., Baum M., Grando S., Ceccarelli S., Bai G., Li R., Von Korff M., Varshney R.K., Graner A. & Valkoun J. (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany 60, 35313544.
  • Gupta P.K., Sharma P.K., Balyan H.S., Roy J.K., Sharma S., Beharav A. & Nevo E. (2002) Polymorphism at rDNA loci in barley and its relation with climatic variables. Theoretical and Applied Genetics 104, 473481.
  • Hargreaves C.E., Gregory P.J. & Bengough A.G. (2009) Measuring root traits in barley (Hordeum vulgare sp. vulgare and ssp. spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography. Plant and Soil 316, 285297.
  • Harlan J.R. & Zohary D. (1966) Distribution of wild wheats and barley. Science 153, 10741080.
  • Hoisington D. & Ortiz R. (2008) Research and field monitoring on transgenic crops by the Centro Internacional de Mejoramiento de Maízy Trigo (CIMMYT). Euphytica 164, 893902.
  • Hollington P.A. (2000) Technological breakthroughs in screening/breeding wheat varieties for salt tolerance. In Proceedings of the National Conference Salinity Management in Agriculture (eds S.K.Gupta, S.K.Sharma & N.K.Tyagi) December 1998, pp. 273289. Central Soil Salinity Research Institute, Karnal, India.
  • Hong J.P. & Kim W.T. (2005) Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding factor like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang). Planta 220, 875888.
  • Husain S., Munns R. & Condon A.G. (2003) Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Australian Journal of Agricultural Research 54, 589597.
  • Inostroza L., Del Pozo A., Matus I., Castillo D., Hayes P., Machado S. & Corey A. (2009) Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. Vulgare background. Molecular Breeding 23, 365376.
  • Islam S., Malik A.I., Islam A.K. & Colmer T.D. (2007) Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. Journal of Experimental Botany 58, 12191229.
  • Ivandic V., Hackett C.A., Zhang Z.J., Staub J.E., Nevo E., Thomas W.T.B. & Forster B.P. (2000) Phenotypic responses of wild barley to experimentally imposed water stress. Journal of Experimental Botany 51, 20212029.
  • Jaglo K.R., Kleff S., Amundsen K.L., Zhang X., Haake V., Zhang J.Z., Deits T. & Thomashow M.F. (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. Plant Physiology 127, 910917.
  • James R.A., Davenport R. & Munns R. (2006) Physiological characterization of two genes for Na+ exclusion in wheat: Nax1 and Nax2. Plant Physiology 142, 15371547.
  • James V.A., Neibaur I. & Altpeter F. (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Research 17, 93104.
  • Kara Y., Martin A., Souyris I., Rekika D. & Monneveux P. (2000) Root characteristics in durum wheat (T. turgidum conv. durum) and some wild Triticeae species. Cereal Research Communications Hungary 28, 247254.
  • King I.P., Forster B.P., Law C.C., Cant K.A., Orford S.E., Gorham J., Reader S. & Miller T.E. (1997) Introgression of salt-tolerance genes from Thinopyrum bessarabicum into wheat. New Phytologist 137, 7581.
  • Kingsbury R. & Epstein E. (1984) Selection for salt-resistant spring wheat. Crop Science 24, 310315.
  • Von Korff M., Wang H., Léon J. & Pillen K. (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theoretical and Applied Genetics 112, 12211231.
  • Von Korff M., Grando S., Del Greco A., This D., Baum M. & Ceccarelli S. (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theoretical Applied Genetics 117, 653669.
  • Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. & Shinozaki K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 13911406.
  • Ma D.Q. (2000) Genetic Resources of Tibetan Barley in China. China Agricultural Press, Beijing.
  • McGuire G.E. & Dvôrák J. (1981) High salt tolerance potential in wheatgrasses. Crop Science 21, 702705.
  • Malik A.I., English J.P. & Colmer T.D. (2009) Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined. Annual of Botany 103, 237248.
  • Mano Y. & Takeda K. (1998) Genetic resources of salt tolerance in wild Hordeum species. Euphytica 103, 137141.
  • Morgan J.M. & Tan M.K. (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Australia Journal of Plant Physiology 23, 803806.
  • Mujeeb-Kazi A., Gorham J. & Lopez-Cesati J. (1993) Use of wild Triticeae relatives for stress tolerance. In International Crop Science I (eds. D.R.Buxton, R.Shibles, R.A.Forsberg, B.L.Blad, K.H.Asay, G.M.Paulsen & R.F.Wilson), pp. 549554. Crop Science Society of America, Madison, WI, USA.
  • Mujeeb-Kazi A., Rosas V. & Roldan S. (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosaauct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. cross T. tauschii; 2n=6x=42, AABBDD) and its potential utilization for wheat improvement. Genetic Resources and Crop Evolution 43, 129134.
  • Munns R. & James R.A. (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil 253, 201218.
  • Munns R. & Richards R.A. (2007) Chapter 22 recent advances in breeding wheat for drought and salt stresses. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops (eds. M.A.Jenks, et al.), pp. 565585. Springer-Verlag, Berlin.
  • Munns R., James R.A. & Läuchli A. (2006) Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57, 10251043.
  • Nakashima K., Ito Y. & Yamaguchi-Shinozaki K. (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and Grasses. Plant Physiology 149, 8895.
  • Nevo E. (1987) Plant genetic resources: prediction by isozyme markers and ecology. In: Rattazi, M.C., Scandalios, J.G., Whitt, G.S., eds. Isozymes: current topics in biological research. Agriculture, Physiology and Medicine 16, 247267.
  • Nevo E. (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In Barley: Genetics, Molecular Biology and Biotechnology (ed. P.R.Shewry), pp. 1943. C.A.B. International, Wallingford, UK.
  • Nevo E. (2004) Genomic diversity in nature and domestication. In Diversity and Evolution of Plants. Genotypic and Phenotypic Variation in Higher Plants (ed. R.Henry), pp. 287316. CAB Publ CAB International, Wallingford, UK.
  • Nevo E. (2007) Evolution of wild wheat and barley and crop improvement: Studies at the Institute of Evolution. Israel Journal of Plant Sciences 55, 251262.
  • Nevo E. & Beiles A. (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: Structure, evolution and application in breeding. Theoretical and Applied Genetics 77, 421455.
  • Nevo E., Golenberg E.M., Beiles A., Brown A.H.D. & Zohary D. (1982) Genetic diversity and environmental associations of wild wheat, Triticum dicoccoides, in Israel. Theoretical and Applied Genetics 62, 241254.
  • Nevo E., Beiles A., Gutterman Y., Storch N. & Kaplan D. (1984a) Genetic resources of wild cereals in Israel and vicinity: I. Phenotypic variation within and between populations of wild wheat, Triticum dicoccoides. Euphytica 33, 717735.
  • Nevo E., Beiles A., Gutterman Y., Storch N. & Kaplan D. (1984b) Genetic resources of wild cereals in Israel and vicinity: II. Phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica 33, 737756.
  • Nevo E., Beiles A. & Zohary D. (1986) Genetic resources of wild barley in the Near East: structure, evolution and application in breeding. Biological Journal of the Linnean Society 27, 355380.
  • Nevo E., Krugman T. & Beiles A. (1993) Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breeding 110, 338341.
  • Nevo E., Baum B., Beiles A. & Johnson D.A. (1998) Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum, in the Fertile Crescent. Genetic Resources and Crop Evolution 45, 151159.
  • Nevo E., Korol A.B., Beiles A. & Fahima T. (2002) Evolution of Wild Emmer and Wheat Improvement. Population Genetics, Genetic Resources, and Genome Organization of Wheat's Progenitor, Triticum dicoccoides. Springer-Verlag, Berlin. 364pp.
  • Omielan J.A., Epstein E. & Dvôrák J. (1991) Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome 34, 961974.
  • Oraby H.F., Ransom C.B., Kravchenko A.N. & Sticklen M.B. (2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Science 45, 22182227.
  • Orton T.J. (1980) Comparison of salt tolerance between Hordeum vulgare and H. jubatumin whole plants and callus culture. Zeitscrift für Pflanzenphysiologie 98, 105118.
  • Owuor E.D., Beharav A., Fahima T., Kirzhner V.M., Korol A.B. & Nevo E. (2003) Microscale ecological stress causes RAPD molecular selection in wild barley, Neve Yaar microsite, Israel. Genetic Resources and Crop Evolution 50, 213224.
  • Pakniyat H., Powell W., Baird E., Handley L.L., Robinson D., Scrimgeour C.M., Nevo E., Hackett C.A., Caligari P.D.S. & Forster B.P. (1997) AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40, 332341.
  • Peleg Z., Fahima T., Abbo S., Krugman T., Nevo E., Yakir D. & Saranga Y. (2005) Genetic diversity for drought resistance in wild wheat and its ecogeographical association. Plant, Cell & Environment 28, 176191.
  • Peleg Z., Saranga Y., Krugman T., Abbo S., Nevo E. & Fahima T. (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant, Cell & Environment 31, 3949.
  • Peleg Z., Fahima T., Krugman T., Abbo S., Yakir D., Korol A.B. & Saranga Y. (2009) Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant, Cell & Environment 32, 758779.
  • Pellegrineschi A., Reynolds M., Pacheco M., Brito R.M., Almeraya R., Yamaguchi-Shinozaki K. & Hoisington D. (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47, 493500.
  • Qin F., Sakuma Y., Li J., Liu Q., Li Y.Q., Shinozaki K. & Yamaguchi-Shinozaki K. (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiology 45, 10421052.
  • Reynolds M.P., Rebetzke G., Pellegrinesci A. & Trethowan R. (2006) Chapter 11, Drought adaptation in wheat. In Drought Tolerance in Cereals (ed. J.M.Ribaut), pp. 402436. Haworth's Food Products Press, New York.
  • Royo A. & Aragüés R. (1999) Salinity-yield response functions of barley genotypes assessed with a triple line source sprinkler system. Plant and Soil 209, 920.
  • Salekdeh G.H., Reynolds M., Bennett J. & Boyer J. (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends in Plant Science 14, 488496.
  • Schachtman D.P., Munns R. & Whitecross M.I. (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Science 31, 992997.
  • Slafer G.A., Araus J.L., Royo C. & Del Moral L.F.G. (2005) Promising ecophysiological traits for genetic improvement of cereal yields in Mediterranean environments. Annual of Applied Biology 146, 6170.
  • Spielmeyer W. & Richards R.A. (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theoretical and Applied Genetics 109, 13031310.
  • Spielmeyer W., Hyles J., Joaquim P., Azanza F., Bonnett D., Ellis M.E., Moore C. & Richards R.A. (2007) A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. Theoretical and Applied Genetics 115, 5966.
  • Storey R., Graham R.D. & Shepherd K.W. (1985) Modification of the salinity response of wheat by the genome of Elytrygia elongatum. Plant and Soil 83, 327330.
  • Suprunova T., Krugman T., Fahima T., Chen G., Shams I., Korol A.B. & Nevo E. (2004) Differential expression of dehydrin (Dhn) in response to water stress in resistant and sensitive wild barley (Hordeum spontaneum). Plant, Cell & Environment 27, 12971308.
  • Suprunova T., Krugman T., Distelfeld A., Fahima T., Nevo E. & Korol A. (2007) Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Molecular Biology 64, 1734.
  • Talamè V., Sanguineti M.C., Chiapparino E., et al. (2004) Spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Annals of Applied Biology 144, 309319.
  • The T.T. (1973) Transference of Resistance to Stem Rust from Triticum monococcum L. to Hexaploid Wheat. PhD thesis, University of Sydney, Sydney.
  • Turpeinen T., Vanhala V., Nevo E. & Nissila E. (2003) AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theoretical and Applied Genetics 106, 13331339.
  • Uauy C., Distelfeld A., Fahima T., Blechl A. & Dubcovsky J. (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 12981301.
  • Valkoun J. (2001) Wheat pre-breeding using wild progenitors. Euphytica 119, 1723.
  • Verhoeven K.J.F., Poorter H., Nevo E. & Biere A. (2008) Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations. Molecular Ecology 17, 34163424.
  • Waines J.G., Rafi M.M. & Ehdaie B. (1993) Yield components and transpiration efficiency in wild wheats. In Biodiversity and Wheat Improvement (ed. A.B.Damania), pp. 173186. John Wiley and Sons, Chichester, UK.
  • Wang A., Yu Z. & Ding Y. (2009) Genetic diversity analysis of wild close relatives of barley from Tibet and the Middle East by ISSR and SSR markers. Comptes Rendus Biologies 332, 393403.
  • Wang J.R., Wei Y.M. & Long X.Y. (2008) Molecular evolution of dimeric alpha-amylase inhibitor genes in wild emmer wheat and its ecological association. BMC Evolutionary Biology 8, 91105.
  • Wang R.R.C., Li X.M., Hu Z.M., Zhang J.Y., Larson S.R., Zhang X.Y., Grieve C.M. & Shannon M.C. (2003) Development of salinity-tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. International Journal of Plant Sciences 164, 2533.
  • Waugh R., Jannink J.L., Muehlbauer G.J. & Ramsay L. (2009) The emergence of whole genome association scans in barley. Current Opinion in Plant Biology 12, 218222.
  • Wei B., Jing R.L., Wang C.S., Chen J.B., Mao X.G., Chang X.P. & Jia J.Z. (2009) Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Molecular Breeding 23, 1322.
  • Wei Y.M., Baum B.R., Nevo E. & Zheng Y.L. (2005) Does domestication mimic speciation? 1. A population-genetic analysis of Hordeum spontaneum and Hordeum vulgare based on AFLP and evolutionary considerations. Canadian Journal of Botany 83, 14961512.
  • Weinig C. & Schmitt J. (2004) Environmental effects on the expression of quantitative trait loci and implications for phenotypic evolution. Bioscience 54, 627635.
  • Xia G., Xiang F., Zhou A., Wang H. & Chen H. (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theoretical and Applied Genetics 107, 399305.
  • Xie W. & Nevo E. (2008) Wild emmer: genetic resources, gene mapping and transfer for wheat improvement. Euphytica 164, 603614.
  • Xu D., Duan X., Wang B., Hong B., Ho T.H.D. & Wu R. (1996) Expression of a late embryogenesis related protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology 110, 249257.
  • Xu X., Monneveux P., Damania A.B. & Zaharieva M. (1993) Evaluation for salt tolerance in genetic resources of Triticum and Aegilops species. Plant Genetic Resource Newsletter 96, 1116.
  • Xu Z.S., Ni Z.Y., Li Z.Y., Li L.C., Chen M., Gao D.Y., Yu X.D., Liu P. & Ma Y.Z. (2009) Isolation and functional characterization of HvDREB1, a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. Journal of Plant Research 122, 121130.
  • Xue Z.Y., Zhi D.Y., Xue G.P., Zhang H., Zhao Y.X. & Xia G.M. (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivumL.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science 167, 849859.
  • Yan J., Chen G., Cheng J.P., Nevo E. & Gutterman Y. (2008) Phenotypic variation in caryopsis dormancy and seedling salt tolerance in wild barley, Hordeum spontaneum, from different habitats in Israel. Genetic Resources and Crop Evolution 55, 9951005.
  • Yang Z., Zhang T., Bolshoy A., Beharav A. & Nevo E. (2009) Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at ‘Evolution Canyon’, Mount Carmel, Israel. Molecular Ecology 18, 20632075.