SEARCH

SEARCH BY CITATION

REFERENCES

  • Ainsworth E.A. & Long S.P. (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165, 351372.
  • Ainsworth E.A., Rogers A., Vodkin L.O., Walter A. & Schurr U. (2006) The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiology 142, 135147.
  • Baier M., Kandlbinder A., Golldack D. & Dietz K. (2005) Oxidative stress and ozone: perception, signalling and response. Plant, Cell & Environment 28, 10121020.
  • Bhalerao R., Keskitalo J., Sterky F., et al. (2003) Gene expression in autumn leaves. Plant Physiology 131, 430442.
  • Brosché M., Vinocur B., Alatalo E., et al. (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biology 6, R101.
  • Calfapietra C., Scarascia Mugnozza G., Karnosky D.F., Loreto F. & Sharkey T.D. (2008) Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytologist 179, 5561.
  • Casteel C.L., O'Neill B.F., Zavala J.A., Bilgin D.D., Berenbaum M.R. & DeLucia E.H. (2008) Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica). Plant, Cell & Environment 31, 419434.
  • Catal R., Sabater B. & Guéra A. (1997) Expression of the plastid ndhF gene product in photosynthetic and non-photosynthetic tissues of developing barley seedlings. Plant & Cell Physiology 38, 13821388.
  • Chang S., Puryear J. & Cairney J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11, 113116.
  • Churchill G.A. (2002) Fundamentals of experimental design for cDNA microarrays. Nature Genetics 32 (Suppl.), 490495.
  • Conesa A., Gotz S., Garcia-Gomez J.M., Terol J., Talon M. & Robles M. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 36743676.
  • Cseke L.J., Tsai C., Rogers A., Nelsen M.P., White H.L., Karnosky D.F. & Podila G.K. (2009) Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. New Phytologist 182, 891911.
  • Dizengremel P. (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiology and Biochemistry 39, 729742.
  • Drake B.G., Jacob J. & Gonzalez-Meler M.A. (2000) Photosynthesis, respiration and global climatic change. In Photosynthesis. A Comprehensive Treatise (ed. A.S.Raghavendra), pp. 273282. Cambridge University Press, Cambridge, UK.
  • Druart N., Rodriguez-Buey M., Barron-Gafford G., Sjödin A., Bhalerao R. & Hurry V. (2006) Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides: implications for future tree growth and carbon sequestration. Functional Plant Biology 33, 121131.
  • Götz S., Garcia-Gomez J.M., Terol J., Williams T.D., Nagaraj S.H., Nueda M.J., Robles M., Talon M., Dopazo J. & Conesa A. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36, 34203435.
  • Goujon T., Minic Z., El Amrani A., Lerouxel O., Aletti E., Lapierre C., Joseleau J. & Jouanin L. (2003) AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. The Plant Journal 33, 677690.
  • Guéra A., Calatayud A., Sabater B. & Barreno E. (2005) Involvement of the thylakoidal NADH-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (Hordeum vulgare L.) seedlings. Journal of Experimental Botany 56, 205218.
  • Gupta P., Duplessis S., White H., Karnosky D.F., Martin F. & Podila G.K. (2005) Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3. New Phytologist 167, 129142.
  • Hansen J. & Møller I.B. (1975) Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry 68, 8794.
  • He Y., Fukushige H., Hildebrand D.F. & Gan S. (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiology 128, 876884.
  • IPCC. (2007) Summary for policymakers. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change (eds B.Metz, O.R.Davidson, P.R.Bosch, R.Dave & L.A.Meyer) Cambridge University Press, Cambridge, UK.
  • Jehnes S., Betz G., Bahnweg G., Haberer K., Sandermann H. & Rennenberg H. (2007) Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L.) trees. Plant Biology 9, 253264.
  • Karnosky D.F., Gagnon Z.E., Dickson R.E., Coleman M.D., Lee E.H. & Isebrands J.G. (1996) Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Canadian Journal of Forest Research – Revue Canadienne De Recherche Forestiere 26, 2337.
  • Karnosky D.F., Zak D.R., Pregitzer K.S., et al. (2003) Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the aspen FACE project. Functional Ecology 17, 289304.
  • Karnosky D.F., Skelly J.M., Percy K.E. & Chappelka A.H. (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environmental Pollution 147, 489506.
  • Kontunen-Soppela S., Ossipov V., Ossipova S. & Oksanen E. (2007) Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Global Change Biology 13, 10531067.
  • Kubiske M.E., Quinn V.S., Heilman W.E., McDonald E.P., Marquardt P.E., Teclaw R.M., Friend A.L. & Karnosky D.F. (2006) Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth. Global Change Biology 12, 10541068.
  • Li X., Xie Z. & Bankaitis V.A. (2000) Phosphatidylinositol/phosphatidylcholine transfer proteins in yeast. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids 1486, 5571.
  • Li C.Y., Junttila O., Ernstsen A., Heino P. & Palva E.T. (2003) Photoperiodic control of growth, cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes. Physiologia Plantarum 117, 206212.
  • Li P., Mane S.P., Sioson A.A., Robinet C.V., Heath L.S., Bohnert H.J. & Grene R. (2006a) Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila. Plant, Cell & Environment 29, 854868.
  • Li P., Sioson A., Mane S., Ulanov A., Grothaus G., Heath L., Murali T., Bohnert H. & Grene R. (2006b) Response diversity of Arabidopsis thaliana ecotypes in elevated [CO2] in the field. Plant Molecular Biology 62, 593.
  • Long S.P. & Naidu S.L. (2002) Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. In Air Pollution and Plant Life (eds J.N.B.Bell & M.Treshow), pp. 6988. John Wiley & Sons, London, UK.
  • Matyssek R. & Sandermann H. (2003) Impact of ozone on trees: an ecophysiological perspective. Progress in Botany 64, 350404.
  • Miyazaki S., Fredricksen M., Hollis K.C., Poroyko V., Shepley D., Galbraith D.W., Long S.P. & Bohnert H.J. (2004) Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Research 90, 47.
  • Muller P., Li X. & Niyogi K.K. (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125, 15581566.
  • Murgia I., Vazzola V., Tarantino D., Cellier F., Ravet K., Briat J. & Soave C. (2007) Knock-out of ferritin AtFer1 causes earlier onset of age-dependent leaf senescence in Arabidopsis. Plant Physiology and Biochemistry 45, 898907.
  • Mutikainen P., Walls M., Ovaska J., Keinänen M., Julkunen-Tiitto R. & Vapaavuori E. (2000) Herbivore resistance in Betula pendula: effect of fertilization, defoliation, and plant genotype. Ecology 81, 4965.
  • Niyogi K.K., Li X., Rosenberg V. & Jung H. (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? Journal of Experimental Botany 56, 375382.
  • Nowak R.S., Ellsworth D.S. & Smith S.D. (2004) Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162, 253280.
  • Nunn A.J., Kozovits A.R., Reiter I.M., et al. (2005) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environmental Pollution 137, 494.
  • Oksanen E. (2003) Responses of selected birch (Betula pendula Roth) clones to ozone change over time. Plant, Cell & Environment 26, 875886.
  • Oksanen E., Haikio E., Sober J. & Karnosky D.F. (2004) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytologist 161, 791799.
  • Oksanen E., Riikonen J., Kaakinen S., Holopainen T. & Vapaavuori E. (2005) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Global Change Biology 11, 732748.
  • Olbrich M., Betz G., Gerstner E., Langebartels C., Sandermann H. & Ernst D. (2005) Transcriptome analysis of ozone-responsive genes in leaves of european beech (Fagus sylvatica L.). Plant Biology 7, 670676.
  • Padu E., Kollist H., Tulva I., Oksanen E. & Moldau H. (2005) Components of apoplastic ascorbate use in Betula pendula leaves exposed to CO2 and O3 enrichment. New Phytologist 165, 131142.
  • Paolacci A.R., Miraldi C., Tanzarella O.A., Badiani M., Porceddu E., Nali C., Lorenzini G. & Ciaffi M. (2007) Gene expression induced by chronic ozone in the Mediterranean shrub Phillyrea latifolia: analysis by cDNA-AFLP. Tree Physiology 27, 15411550.
  • Peltonen P.A., Vapaavuori E. & Julkunen-Tiitto R. (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biology 11, 13051324.
  • Percy K.E. & Ferretti M. (2004) Air pollution and forest health: toward new monitoring concepts. Environmental Pollution 130, 113126.
  • Puckette M.C., Tang Y.H. & Mahalingam R. (2008) Transcriptomic changes induced by acute ozone in resistant and sensitive Medicago truncatula accessions. BMC Plant Biology 8, 4646.
  • Rae A.M., Ferris R., Tallis M.J. & Taylor G. (2006) Elucidating genomic regions determining enhanced leaf growth and delayed senescence in elevated CO2. Plant, Cell & Environment 29, 17301741.
  • Rae A.M., Tricker P.J., Bunn S.M. & Taylor G. (2007) Adaptation of tree growth to elevated CO2: quantitative trait loci for biomass in Populus. New Phytologist 175, 5969.
  • Rebbeck J. & Scherzer A.J. (2002) Growth responses of yellow-poplar (Liriodendron tulipifera L.) exposed to 5 years of O3 alone or combined with elevated CO2. Plant, Cell & Environment 25, 15271537.
  • Riikonen J. (2004) Modification of the growth, photosynthesis and leaf structure of silver birch by elevated CO2 and O3. Doctoral dissertation, Kuopio University Publications C. Natural and Environmental Sciences 178, Kuopio, Finland.
  • Riikonen J., Oksanen E., Peltonen P., Holopainen T. & Vapaavuori E. (2003) Seasonal variation in physiological characteristics of two silver birch clones in the field. Canadian Journal of Forest Research – Revue Canadienne De Recherche Forestiere 33, 21642176.
  • Riikonen J., Lindsberg M., Holopainen T., Oksanen E., Lappi J., Peltonen P. & Vapaavuori E. (2004) Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiology 24, 12271237.
  • Riikonen J., Holopainen T., Oksanen E. & Vapaavuori E. (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiology 25, 549560.
  • Riikonen J., Kets K., Darbah J., Oksanen E., Sober A., Vapaavuori E., Kubiske M.E., Nelson N. & Karnosky D.F. (2008) Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of CO2 and O3. Tree Physiology 28, 243253.
  • Ritchie M.E., Silver J., Oshlack A., Holmes M., Diyagama D., Holloway A. & Smyth G.K. (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23, 27002707.
  • Rizzo M., Bernardi R., Salvini M., Nali C., Lorenzini G. & Durante M. (2007) Identification of differentially expressed genes induced by ozone stress in sensitive and tolerant poplar hybrids. Journal of Plant Physiology 164, 945.
  • Rumeau D., Peltier G. & Cournac L. (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant, Cell & Environment 30, 10411051.
  • Ruonala R., Rinne P.L.H., Baghour M., Moritz T., Tuominen H. & Kangasjarvi J. (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. The Plant Journal 46, 628640.
  • Ryan A., Cojocariu C., Possell M., Davies W.J. & Hewitt C.N. (2009) Defining hybrid poplar (Populus deltoides × Populus trichocarpa) tolerance to ozone: identifying key parameters. Plant, Cell & Environment 32, 3145.
  • Schaller F. (2001) Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. Journal of Experimental Botany 52, 1123.
  • Sillanpää M., Kontunen-Soppela S., Luomala E., Sutinen S., Kangasjärvi J., Häggman H. & Vapaavuori E. (2005) Expression of senescence-associated genes in the leaves of silver birch (Betula pendula). Tree Physiology 25, 11611172.
  • Sitch S., Cox P.M., Collins W.J. & Huntingford C. (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791794.
  • Smyth G.K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, 3.
  • Smyth G.K. (2005) Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds R.Gentleman, V.Carey, S.Dudoit, R.Irizarry & W.Huber), pp. 397420. Springer, New York, NY, USA.
  • Tamaoki M., Nakajima N., Kubo A., Aono M., Matsuyama T. & Saji H. (2003) Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Molecular Biology 53, 443456.
  • Taylor G., Street N.R., Tricker P.J., Sjödin A., Graham L., Skogström O., Calfapietra C., Scarascia-Mugnozza G. & Jansson S. (2005) The transcriptome of Populus in elevated CO2. New Phytologist 167, 143154.
  • Taylor G., Tallis M.J., Giardina C.P., et al. (2008) Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biology 14, 264275.
  • Tosti N., Pasqualini S., Borgogni A., Ederli L., Falistocco E., Crispi S. & Paolocci F. (2006) Gene expression profiles of O3-treated Arabidopsis plants. Plant, Cell & Environment 29, 16861702.
  • Vahala J., Ruonala R., Keinänen M., Tuominen H. & Kangasjarvi J. (2003) Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiology 132, 185195.
  • Valjakka M., Luomala E.M., Kangasjarvi J. & Vapaavuori E. (1999) Expression of photosynthesis- and senescence-related genes during leaf development and senescence in silver birch (Betula pendula) seedlings. Physiologia Plantarum 106, 302310.
  • Valkama E., Koricheva J. & Oksanen E. (2007) Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biology 13, 184201.
  • Vapaavuori E., Oksanen T., Holopainen J.K., et al. (2002) Technical report. Open-top chamber fumigation of cloned silver birch (Betula pendula Roth) trees to elevated CO2 and ozone: description of the fumigation system and the experimental site. Metsäntutkimuslaitoksen Tiedonantoja 832, 28. http://www.metla.fi/julkaisut/mt/838
  • Vapaavuori E., Holopainen J.K., Holopainen T., et al. (2009) Rising atmospheric CO2 concentration partially masks the negative effects of elevated O3 in silver birch (Betula pendula Roth). Ambio 38, 418423.
  • Wegener A., Gimbel W., Werner T., Hani J., Ernst D. & Sandermann H. (1997) Sequence analysis and ozone-induced accumulation of polyubiquitin mRNA in Pinus sylvestris. Canadian Journal of Forest Research – Revue Canadienne De Recherche Forestiere 27, 945948.
  • Wittig V.E., Ainsworth E.A. & Long S.P. (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell & Environment 30, 11501162.
  • Woodward F.I. (2002) Potential impacts of global elevated CO2 concentrations on plants. Current Opinion in Plant Biology 5, 207211.
  • Wustman B.A., Oksanen E., Karnosky D.F., Noormets A., Isebrands J.G., Pregitzer K.S., Hendrey G.R., Sober J. & Podila G.K. (2001) Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3? Environmental Pollution 115, 473.
  • Yamaji K., Julkunen-Tiitto R., Rousi M., Freiwald V. & Oksanen E. (2003) Ozone exposure over two growing seasons alters root-to-shoot ratio and chemical composition of birch (Betula pendula Roth). Global Change Biology 9, 13631377.