Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS


R. Metzner. Fax: +49 (0) 2461-612492; e-mail:


Lateral exchange of water and nutrients between xylem and surrounding tissues helps to de-couple uptake from utilization in all parts of a plant. We studied the dynamics of these exchanges, using stable isotope tracers for water (H218O), magnesium (26Mg), potassium (41K) and calcium (44Ca) delivered via a cut stem for various periods to the transpiration stream of bean shoots (Phaseolus vulgaris cv. Fardenlosa Shiny). Tracers were subsequently mapped in stem cross-sections with cryo-secondary ion mass spectrometry.

The water tracer equilibrated within minutes across the entire cross-section. In contrast, the nutrient tracers showed a very heterogeneous exchange between xylem vessels and the different stem tissues, even after 4 h. Dynamics of nutrients in the tissues revealed a fast and extensive exchange of nutrients in the xylem parenchyma, with, for example, calcium being completely replaced by tracer in less than 5 min. Dilution of potassium tracer during its 30 s transit in xylem sap through the stem showed that potassium concentration was up-regulated over many hours, to the extent that some of it was probably supplied by phloem recirculation from the shoot.