SEARCH

SEARCH BY CITATION

REFERENCES

  • Achkor H., Díaz M., Fernández M.R., Biosca J.A., Parés X. & Martínez M.C. (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiology 132, 22482255.
  • Anderson L.E., Ringenberg M.R. & Carol A.A. (2004) Cytosolic glyceraldehyde-3-P dehydrogenase and the B subunit of the chloroplast enzyme are present in the pea leaf nucleus. Protoplasma 223, 3343.
  • Aono M., Kubo A., Saji H., Tanaka K. & Kondo N. (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant & Cell Physiology 34, 129135.
  • Arisi A.C.M., Noctor G., Foyer C.H. & Jouanin L. (1997) Modification of thiol contents in poplars (Populus tremula x P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203, 362372.
  • Arscott L.D., Veine D.M. & Williams C.H. (2000) Mixed disulfide with glutathione as an intermediate in the reaction catalyzed by glutathione reductase from yeast and as a major form of the enzyme in the cell. Biochemistry 39, 47114721.
  • Ball L., Accotto G., Bechtold U., et al. (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. The Plant Cell 16, 24482462.
  • Bandyopadhay S., Gama F., Molina-Navarro M.M., et al. (2008) Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-S] clusters. The EMBO Journal 27, 11221133.
  • Barroso J.B., Corpas F.J., Carreras A., et al. (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. Journal of Experimental Botany 57, 17851793.
  • Bartoli C.G., Tambussi E.A., Diego F. & Foyer C.H. (2009) Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Letters 583, 118122.
  • Bashandy T., Guilleminot J., Vernoux T., Caparros-Ruiz D., Ljung K., Meyer Y. & Reichheld J.P. (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. The Plant Cell 22, 376391.
  • Becker B., Holtgrefe S., Jung S., Wunrau C., Kandlbinder S., Baier M., Dietz K.J., Backhausen J.E. & Scheibe R. (2006) Influence of the photoperiod on redox regulation and stress responses in Arabidopsis thaliana L. (Heynh.) plants under long- and short-day conditions. Planta 224, 380393.
  • Belmonte M.F., Donald G., Reid D.M., Yeung E.C. & Stasolla C. (2005) Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca). Journal of Experimental Botany 56, 23552364.
  • Bick J.A., Aslund F., Chen Y. & Leustek T. (1998) Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate reductase. Proceedings of the National Academy of Sciences of the United States of America 95, 84048409.
  • Bick J.A., Setterdahl A.T., Knaff D.B., Chen Y., Pitcher L.H., Zilinskas B.A. & Leustek T. (2001) Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress. Biochemistry 40, 90409048.
  • Bindschedler L.V., Dewdney J., Blee K.A., et al. (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. The Plant Journal 47, 851863.
  • Bloem E., Haneklaus S., Salac I., Wickenhäuser P. & Schnug E. (2007) Facts and fiction about sulfur metabolism in relation to plant-pathogen interactions. Plant Biology 9, 596607.
  • Blum R., Beck A., Korfte A., Stengel A., Letzel T., Lendzian K. & Grill E. (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. The Plant Journal 49, 740749.
  • Blum R., Meyer K.C., Wünschmann J., Lendzian K.J. & Grill E. (2010) Cytosolic action of phytochelatin synthase. Plant Physiology 153, 159169.
  • Bogs J., Bourbouloux A., Cagnac O., Wachter A., Rausch D. & Delrot S. (2003) Functional chacterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidence for regulation by heavy metal exposure. Plant, Cell & Environment 26, 17031711.
  • Böttcher C., Westphal L., Schmotz C., Prade E., Scheel D. & Glawischnig E. (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. The Plant Cell 21, 18301845.
  • Bourbouloux A., Shahi P., Chakladar A., Delrot S. & Bachhawat A.K. (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. The Journal of Biological Chemistry 275, 1325913265.
  • Bourgis F., Roje S., Nuccio M.L., et al. (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. The Plant Cell 11, 14851497.
  • Bräutigam K., Dietzel L., Kleine T., et al. (2009) Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. The Plant Cell 21, 27152732.
  • Bräutigam K., Dietzel L. & Pfannschmidt T. (2010) Hypothesis: a binary redox control mode as universal regulator of photosynthetic light acclimation. Plant Signaling & Behavior 5, 8185.
  • Brazier-Hicks M., Evans K.M., Cunningham O.D., Hodgson D.R.W., Steel P.G. & Edwards R. (2008) Catabolism of glutathione-conjugates in Arabidopsis thaliana. Role in metabolic reactivation of the herbicide safener fenchlorim. The Journal of Biological Chemistry 283, 2110221112.
  • Broadbent P., Creissen G.P., Kular B., Wellburn A.R. & Mullineaux P.M. (1995) Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. The Plant Journal 8, 247255.
  • Buchanan B.B. & Balmer Y. (2005) Redox regulation: a broadening horizon. Annual Review of Plant Biology 56, 187220.
  • Buchner P., Stuiver C.E., Westerman S., Wirtz M., Hell R., Hawkesford M.J. & De Kok L.J. (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiology 136, 33963408.
  • Burhans W.C. & Heintz N.H. (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radical Biology and Medicine 47, 12821293.
  • Butt A.D. & Ohlrogge J.B. (1991) Acyl carrier protein is conjugated to glutathione in spinach seed. Plant Physiology 96, 937942.
  • Buwalda F., Stulen I., de Kok L. & Kuiper P.J.C. (1990) Cysteine, γ-glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. II. Glutathione accumulation in detached leaves exposed to H2S in the absence of light is stimulated by the supply of glycine to the petiole. Physiologia Plantarum 74, 663668.
  • Cagnac O., Bourbouloux A., Chakrabarty D., Zhang M.Y. & Delrot S. (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiology 135, 13781387.
  • Cairns N.G., Pasternak M., Wachter A., Cobbett C.S. & Meyer A.J. (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiology 141, 446455.
  • Cazalé A.C. & Clemens S. (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Letters 507, 215219.
  • Chamnongpol S., Willekens H., Moeder W., Langebartels C., Sandermann H., Van Montagu M., Inze D. & Van Camp W. (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proceedings of the National Academy of Sciences of the United States of America 95, 58185823.
  • Chang C.C., Slesak I., Jordá L., Sotnikov A., Melzer M., Miszalski Z., Mullineaux P.M., Parker J.E., Karpinska B. & Karpinski S. (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiology 150, 670683.
  • Chaouch S. & Noctor G. (2010) Myo-inositol abolishes salicylic acid-dependent cell death and pathogen defence responses triggered by peroxisomal H2O2. New Phytologist 188, 711718.
  • Chaouch S., Queval G., Vanderauwera S., Mhamdi A., Vandorpe M., Langlois-Meurinne M., Van Breusegem F., Saindrenan P. & Noctor G. (2010) Peroxisomal hydrogen peroxide is coupled to biotic defense responses by isochorismate synthase 1 in a daylength-related manner. Plant Physiology 153, 16921705.
  • Chassot C., Buchala A., Schoonbeek H.J., Métraux J.P. & Lamotte A. (2008) Wounding of Arabidiopsis leaves causes a powerful but transient protection against Botrytis infection. The Plant Journal 55, 555567.
  • Chen Z., Young T.E., Ling J., Chang S.C. & Gallie D.R. (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proceedings of the National Academy of Sciences of the United States of America 100, 35253530.
  • Chen R., Sun S., Wang C., et al. (2009) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Research 19, 13771387.
  • Cheng N.H. & Hirschi K.D. (2003) Cloning and characterization of CXIP1, a novel PICOT domain-containing Arabidopsis protein that associates with CAX1. The Journal of Biological Chemistry 278, 65036509.
  • Cheng N.H., Liu J.Z., Brock A., Nelson R.S. & Hirschi K.D. (2006) AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. Journal of Biological Chemistry 281, 2628026288.
  • Chew O., Whelan J. & Millar A.H. (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. Journal of Biological Chemistry 278, 4686946877.
  • Clemens S. & Peršoh D. (2009) Multi-tasking phytochelatin synthases. Plant Science 177, 266271.
  • Cobbett C. & Goldsbrough P. (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxifaction and homeostasis. Annual Review of Plant Biology 53, 159182.
  • Cobbett C.S., May M.J., Howden R. & Rolls B. (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ−glutamylcysteine synthetase. The Plant Journal 16, 7378.
  • Cosio C. & Dunand C. (2009) Specific functions of individual class III peroxidase genes. Journal of Experimental Botany 60, 391408.
  • Creissen G., Reynolds H., Xue Y.B. & Mullineaux P. (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria. The Plant Journal 8, 167175.
  • Creissen G., Firmin J., Fryer M., et al. (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco paradoxically causes increased oxidative stress. The Plant Cell 11, 12771291.
  • Davoine C., Falletti O., Douki T., Iacazio G., Ennar N., Montillet J.L. & Triantaphylides C. (2006) Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiology 140, 14841493.
  • Deb Roy S., Saxena M., Bhomkar P.S., Pooggin M., Hohn T. & Bhalla-Sarin N. (2008) Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoters. Plant Cell, Tissue and Organ Culture 95, 111.
  • Després C., Chubak C., Rochon A., Clark R., Bethune T., Desveaux D. & Fobert P.R. (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. The Plant Cell 15, 21812191.
  • Destro T., Prasad D., Martignago D., Bernet I.L., Trentin A.R., Renu I.K., Ferretti M. & Masi A. (2011) Compensatory expression and substrate inducibility of γ-glutamyl transferase GGT2 isoform in Arabidopsis thaliana. Journal of Experimental Botany 62, 805814.
  • Díaz M., Achkor H., Titarenko E. & Martínez M.C. (2003) The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Letters 543, 136139.
  • Diaz-Vivancos P., Dong Y.-P., Ziegler K., Markovic J., Pallardó F., Pellny T.K., Verrier P. & Foyer C.H. (2010a) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. The Plant Journal 64, 825838.
  • Diaz-Vivancos P., Wolff T., Markovic J., Pallard O.F.V. & Foyer C.H. (2010b) A nuclear glutathione cycle within the cell cycle. Biochemical Journal 431, 169178.
  • Dietz K.J. (2003) Plant peroxiredoxins. Annual Review of Plant Biology 54, 93107.
  • Ding S.H., Lu Q.T., Zhang Y., Yang Z.P., Wen X.G., Zhang L.X. & Lu C.M. (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Molecular Biology 69, 577592.
  • Dinneny J.R., Long T.A., Wang J.Y., Mace D., Pointer S., Barron C., Brady S.M., Schiefelbein J. & Benfey P.N. (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 32, 942945.
  • Dixon D.P. & Edwards R. (2010) Glutathione S-transferases. The Arabidopsis Book 8, e0131. doi/full/10.1199/tab.0131.
  • Dixon D.P., Davis B.G. & Edwards R. (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. Journal of Biological Chemistry 277, 3085930869.
  • Dixon D.P., Skipsey M., Grundy N.M. & Edwards R. (2005) Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiology 138, 22332244.
  • Dixon D.P., Hawkins T., Hussey P.J. & Edwards R. (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. Journal of Experimental Botany 60, 12071218.
  • Dron M., Clouse S.D., Dixon R.A., Lawton M.A. & Lamb C.J. (1988) Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proceedings of the National Academy of Sciences of the United States of America 85, 67386742.
  • Edwards E.A., Rawsthorne S. & Mullineaux P.M. (1990) Subcellular distribution of multiple forms of glutathione reductase in pea (Pisum sativum L.). Planta 180, 278284.
  • Edwards R., Blount J.W. & Dixon R.A. (1991) Glutathione and elicitation of the phytoalexin response in legume cell cultures. Planta 184, 403409.
  • Enyedi B., Várnai P. & Geiszt M. (2010) Redox state of the endoplasmic reticulum is controlled by Ero1L-alpha and intraluminal calcium. Antioxidants & Redox Signaling 13, 721729.
  • Eshdat Y., Holland D., Faltin Z. & Ben-Hayyim G. (1997) Plant glutathione peroxidases. Physiologia Plantarum 100, 234240.
  • Esterbauer E. & Grill D. (1978) Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiology 61, 119121.
  • Fairlamb A.H., Blackburn P., Ulrich P., Chait B.T. & Cerami A. (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227, 14851487.
  • Feechan A., Kwon E., Yun B.W., Wang Y., Pallas J.A. & Loake G.J. (2005) A central role for S-nitrosothiols in plant disease resistance. Proceedings of the National Academy of Sciences of the United States of America 102, 80548059.
  • Ferrari S., Plotnikova J.M., De Lorenzo G. & Ausubel F.M. (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS and PAD2, but not SID2, EDS5 or PAD4. The Plant Journal 35, 193205.
  • Ferretti M., Destro T., Tosatto S.C.E., La Rocca N., Rascio N. & Masi A. (2009) Gamma-glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast. New Phytologist 181, 115126.
  • Foyer C.H. & Noctor G. (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119, 355364.
  • Foyer C.H., Lelandais M., Galap C. & Kunert K.J. (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiology 97, 863872.
  • Foyer C.H., Souriau N., Perret S., Lelandais M., Kunert K.J., Pruvost C. & Jouanin L. (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiology 109, 10471057.
  • Foyer C.H., Theodoulou F.L. & Delrot S. (2001) The functions of intercellular and intracellular glutathione transport systems in plants. Trends in Plant Science 6, 486492.
  • Foyer C.H., Bloom A.J., Queval G. & Noctor G. (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annual Review of Plant Biology 60, 455484.
  • Frendo P., Jiménez M.J.H., Mathieu C., Duret L., Gallesi D., Van de Sype G., Hérouart D. & Puppo A. (1999) A Medicago trunculata homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Plant Physiology 126, 17061715.
  • Frendo P., Harrison J., Norman C., Hernandez-Jimenez M.J., Van de Sype G., Gilabert A. & Puppo A. (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Molecular Plant-Microbe Interactions 18, 254259.
  • Frottin F., Espagne C., Traverso J.A., Mauve C., Valot B., Lelarge-Trouverie C., Zivy M., Noctor G., Meinnel T. & Giglione C. (2009) Cotranslational proteolysis dominates glutathione homeostasis for proper growth and development. The Plant Cell 21, 32963314.
  • Gao X.H., Bedhomme M., Veyel D., Zaffagnini M. & Lemaire S.D. (2009a) Methods for analysis of protein glutathionylation and their application to photosynthetic organisms. Molecular Plant 2, 218235.
  • Gao X.H., Bedhomme M., Michelet M., Zaffagnin M. & Lemaire S.D. (2009b) Glutathionylation in photosynthetic organisms. Advances in Botanical Research 52, 363403.
  • Gao X.H., Zaffagnini M., Bedhomme M., Michelet L., Cassier-Chauvat C., Decottignies P. & Lemaire S.D. (2010) Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii: kinetics and specificity in deglutathionylation reactions. FEBS Letters 584, 22422248.
  • Gelhaye E., Rouhier N., Gérard J., et al. (2005) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proceedings of the National Academy of Sciences of the United States of America 101, 1454514550.
  • Geu-Flores F., Nielsen M.T., Nafisi M., Møldrup M.E., Olsen C.E., Motawia M.S. & Halkier B.A. (2009) Glucosinolate engineering identifies a γ-glutamyl peptidase. Nature Chemical Biology 5, 575577.
  • Giegé P., Heazlewood J.L., Roessner-Tunali U., Millar A.H., Fernie A.R., Leaver C.J. & Sweetlove L.J. (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. The Plant Cell 15, 21402151.
  • Glazebrook J. & Ausubel F.M. (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America 91, 89558959.
  • Gomez L.D., Noctor G., Knight M. & Foyer C.H. (2004a) Regulation of calcium signaling and gene expression by glutathione. Journal of Experimental Botany 55, 18511859.
  • Gomez L.D., Vanacker H., Buchner P., Noctor G. & Foyer C.H. (2004b) The intercellular distribution of glutathione synthesis and its response to chilling in maize. Plant Physiology 134, 16621671.
  • Griffith O.W. & Meister A. (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). The Journal of Biological Chemistry 254, 75587560.
  • Grill E., Winnacker E.L. & Zenk M.H. (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences of the United States of America 84, 439443.
  • Grill E., Löffler S., Winnacker E.L. & Zenk M.H. (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ−glutamylcysteine dipeptidyl transferase (phytochelatin synthase). Proceedings of the National Academy of Sciences of the United States of America 86, 68386842.
  • Gromes R., Hothorn M., Lenherr E.D., Rybin V., Sheffzek K. & Rausch T. (2008) The redox switch of γ-glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants. The Plant Journal 54, 10631075.
  • Grzam A., Tennstedt P., Clemens S., Hell R. & Meyer A.J. (2006) Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase. FEBS Letters 580, 63846390.
  • Grzam A., Martin M.N., Hell R. & Meyer A.J. (2007) γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Letters 581, 31313138.
  • Gullner G., Tóbiás I., Fodor J. & Kömives T. (1999) Elevation of glutathione level of glutathione-related enzymes affect virus infection in tobacco. Free Radical Research 31, 155161.
  • Gullner G., Komives T. & Rennenberg H. (2001) Enhanced tolerance of transgenic poplar plants overexpressing γ-glutamylcysteine synthetase towards chloroacetanilide herbicides. Journal of Experimental Botany 52, 971979.
  • Guo Y., Huang C., Xie Y., Song F. & Zhou X. (2010) A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stress. Planta 232, 14991509.
  • Ha S.K., Smith A.P., Howden R., Dietrich W.M., Bugg S., O'Connell M.J., Goldsbrough P.B. & Cobbett C.S. (1999) Phytochelatin synthase genes from Arabidopsis and Schizosaccharomyces pombe. The Plant Cell 11, 11531163.
  • Haas F.H., Heeg C., Queiroz R., Bauer A., Wirtz M. & Hell R. (2008) Mitochondrial serine acetyltransferase functions as pacemaker of cysteine synthesis in plant cells. Plant Physiology 148, 10551067.
  • Halliwell B. & Foyer C.H. (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139, 917.
  • Han Y., Zhang J., Chen X., Gao Z., Xuan W., Xu S., Ding X. & Shen W. (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytologist 177, 155166.
  • Hancock J.T., Desikan R., Harrison J., Bright J., Hooley R. & Neill S.J. (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. Journal of Experimental Botany 57, 17111718.
  • Harms K., Von Ballmoos P., Brunold C., Höfgen R. & Hesse H. (2000) Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. The Plant Journal 22, 335343.
  • Haslam R., Rust S., Pallett K., Cole D. & Coleman J. (2002) Cloning and characterisation of S-formylglutathione hydrolase from Arabidopsis thaliana: a pathway for formaldehyde detoxification. Plant Physiology & Biochemistry 40, 281288.
  • Hell R. & Bergmann L. (1990) γ−Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180, 603612.
  • Herbette S., Lenne C., Leblanc N., Julien J.L., Drevet J.R. & Roeckel-Drevet P. (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. European Journal of Biochemistry 269, 24142420.
  • Herschbach C. & Rennenberg H. (1994) Influence of glutathione (GSH) on net uptake of sulfate and sulfate transport in tobacco plants. Journal of Experimental Botany 45, 10691076.
  • Herschbach C. & Rennenberg H. (1995) Long-distance transport of 35S-sulphur in 3-year-old beech trees (Fagus sylvatica). Physiologia Plantarum 95, 379386.
  • Herschbach C., Rizzini L., Mult S., Hartmann T., Busch F., Peuke A.D., Kopriva S. & Ensminger I. (2009) Over-expression of bacterial γ-glutamylcysteine synthetase (GSH1) in plastids affects photosynthesis, growth and sulphur metabolism in poplar (Populus tremula × Populus alba) dependent on the resulting γ-glutamylcysteine and glutathione levels. Plant, Cell & Environment 33, 11381151.
  • Hicks L.M., Cahoon R.E., Bonner E.R., Rivard R.S., Sheffield J. & Jez J.M. (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. The Plant Cell 19, 26532661.
  • Höller K., Király L., Künstler A., Müller M., Gullner G., Fattinger M. & Zechmann B. (2010) Enhanced glutathione metabolism is correlated with sulfur-induced resistance in tobacco mosiac virus-infected genetically susceptible Nicotiana tabacum plants. Molecular Plant-Microbe Interactions 23, 14481459.
  • Holtgrefe S., Gohlke J., Starmann J., Druce S., Klocke S., Altmann B., Wojtera J., Lindermayr C. & Scheibe R. (2008) Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. Physiologia Plantarum 133, 211218.
  • Hothorn M., Wachter A., Gromes R., Stuwe T., Rausch T. & Scheffzek K. (2006) Structural basis for the redox control of plant glutamate cysteine ligase. Journal of Biological Chemistry 281, 2755727565.
  • Howden R. & Cobbett C.S. (1992) Cadmium-sensitive mutants of Arabidopsis thaliana. Plant Physiology 99, 100107.
  • Howden R., Anderson C.R., Goldsbrough P.B. & Cobbett C.S. (1995) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiology 107, 10671073.
  • Hwang C., Sinskey A.J. & Lodish H.F. (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 14961502.
  • Igamberdiev A.U. & Gardeström P. (2003) Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochimica et Biophysica Acta 1606, 117125.
  • Igamberdiev A.U., Bykova N.V. & Gardeström P. (1997) Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants. FEBS Letters 412, 265269.
  • Iqbal A., Yabuta Y., Takeda T., Nakano Y. & Shigeoka S. (2006) Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS Journal 273, 55895597.
  • Ito H., Iwabuchi M. & Ogawa K. (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant & Cell Physiology 44, 655660.
  • Ivanova L.A., Ronzhina D.A., Ivanov L.A., Stroukova L.V., Peuke A.D. & Rennenberg H. (2011) Overexpression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on contaminated soil. Plant Biology 13, 649659.
  • Jamaï A., Tommasini R., Martinoia E. & Delrot S. (1996) Characterization of glutathione uptake in broad bean leaf protoplasts. Plant Physiology 111, 11451152.
  • Jez J.M., Cahoon R.E. & Chen S. (2004) Arabidopsis thaliana glutamate-cysteine ligase. Functional properties, kinetic mechanism, and regulation of activity. Journal of Biological Chemistry 279, 3346333470.
  • Jiang K. & Feldman L. (2010) Positioning of the auxin maximum affects the character of cells occupying the root stem cell niche. Plant Signaling and Behavior 5, 13.
  • Jiang K., Ballinger T., Li D., Zhang S. & Feldman L. (2006a) A role for mitochondria in the establishment and maintenance of the maize root quiescent center. Plant Physiology 140, 11181125.
  • Jiang K., Schwarzer C., Lally E., Zhang S.B., Ruzin S., Machen T., Remington S.J. & Feldman L. (2006b) Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiology 141, 397403.
  • Jiménez A., Hernández J.A., del Río L. & Sevilla F. (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology 114, 275284.
  • Jubany-Mari T., Alegre-Batlle L., Jiang K. & Feldman L.J. (2010) Use of a redox-sensing GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana water-stressed plants. FEBS Letters 584, 889897.
  • Kataya A.M.R. & Reumann S. (2010) Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. Plant Signaling & Behavior 5, 171175.
  • Kawashima C.G., Berkowitz O., Hell R., Noji M. & Saito K. (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiology 137, 220230.
  • Kim S.O., Merchant K., Nudelman R., Beyer W.F., Keng T., DeAngelo J., Hausladen A. & Stamler J.S. (2002) OxyR: a molecular code for redox-related signaling. Cell 109, 383396.
  • Klapheck S. (1988) Homoglutathione: isolation, quantification and occurrence in legumes. Physiologia Plantarum 74, 727732.
  • Klapheck S., Chrost B., Starke J. & Zimmermann H. (1992) γ-Glutamylcysteinylserine – a new homologue of glutathione in plants of the family Poaceae. Botanica Acta 105, 174179.
  • Koh S., Wiles A.M., Sharp J.S., Naider F.R., Becker J.M. & Stacey G. (2002) An oligopeptide transporter gene family in Arabidopsis. Plant Physiology 128, 2129.
  • Koornneef A., Leon-Reyes A., Ritsema T., Verhage A., Den Otter F.C., Van Loon L.C. & Pieterse C.M.J. (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiology 147, 13581368.
  • Kopriva S. & Rennenberg H. (2004) Control of sulphate assimilation and glutathione synthesis, interaction with N and C metabolism. Journal of Experimental Botany 55, 18311842.
  • Koprivova A., Mugford S.T. & Kopriva S. (2010) Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Reports 29, 11571167.
  • Kornyeyev D., Logan B.A., Allen R.D. & Holaday A.S. (2005) Field-grown cotton plants with elevated activity of chloroplastic glutathione reductase exhibit no significant alteration of diurnal and seasonal patterns of excitation energy partitioning and CO2 fixation. Field Crops Research 94, 165175.
  • Kranner I. & Grill D. (1996) Significance of thiol-disulfide exchange in resting stages of plant development. Botanica Acta 109, 814.
  • Kranner I., Beckett R.P., Wornik S., Zorn M. & Pfeifhofer H.W. (2002) Revival of a resurrection plant correlates with its antioxidant status. The Plant Journal 31, 1324.
  • Kranner I., Birtic S., Anderson K.M. & Pritchard H.W. (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death. Free Radical Biology & Medicine 40, 21552165.
  • Laloi C., Mestres-Ortega D., Marco Y., Meyer Y. & Reichheld J.P. (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and is W-Box-mediated response to pathogen elicitor. Plant Physiology 134, 10061016.
  • Lappartient A.G., Vidmar J.J., Leustek T., Glass A.D. & Touraine B. (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. The Plant Journal 18, 8995.
  • Lee S., Petros D., Moon J.S., Ko T.S., Golsdsbrough P.B. & Korban S.S. (2003) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiology & Biochemistry 41, 903910.
  • Lee U., Wie C., Fernandez B.O., Feelisch M. & Vierling E. (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. The Plant Cell 20, 786802.
  • Lemaire S.D. (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynthesis Research 79, 305318.
  • Leustek T. (2002) Sulfate metabolism. The Arabidopsis Book 1, e0017. doi:10.1199/tab.0017.
  • Levine A., Tenhaken R., Dixon R. & Lamb C. (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583593.
  • Li S., Lauri A., Ziemann M., Busch A., Bhave M. & Zachgo S. (2009) Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana. The Plant Cell 21, 429441.
  • Liedschulte V., Wachter A., Zhigang A. & Rausch T. (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Journal of Plant Biotechnology 8, 807820.
  • Lindermayr C. & Durner J. (2009) S-Nitrosylation in plants: pattern and function. Journal of Proteomics 73, 19.
  • Lindermayr C., Saalbach G. & Dürner J. (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiology 137, 921930.
  • Lindermayr C., Saalbach G., Bahnweg G. & Durner J. (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. Journal of Biological Chemistry 281, 42854291.
  • Lindermayr C., Sell S., Müller B., Leister D. & Durner J. (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. The Plant Cell 22, 28942907.
  • Lu Y.P., Li Z.S., Drozdowicz Y.M., Hörtensteiner S., Martinoia E. & Rea P.A. (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. The Plant Cell 10, 267282.
  • MacNicol P.K. (1987) Homoglutathione and glutathione synthetases of legume seedlings: partial purification and substrate specificity. Plant Science 53, 229235.
  • Maiti M.K., Krishnasamy S., Owen H.A. & Makaroff C.A. (1997) Molecular characterization of glyoxalase II from Arabidopsis thaliana. Plant Molecular Biology 35, 471481.
  • Marasinghe G.P.K., Sander I.M., Bennett B., Perlyannan G., Yang K.W., Makaroff C.A. & Crowder M.W. (2005) Structural studies on a mitochondrial glyoxalase II. Journal of Biological Chemistry 280, 4066840675.
  • Markovic J., Borrás C., Ortega A., Sastre J., Viña J. & Pallardó F.V. (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. Journal of Biological Chemistry 282, 2041620424.
  • Martin M.N. & Slovin J.P. (2000) Purified γ-glutamyl transpeptidases from tomato exhibit high affinity for glutathione and glutathione S-conjugates. Plant Physiology 122, 14171426.
  • Martin M.N., Saladores P.H., Lambert E., Hudson A.O. & Leustek T. (2007) Localization of members of the γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis. Plant Physiology 144, 17151732.
  • Martínez M.C., Achkor H., Persson B., Fernández M.R., Shafqat J., Farrés J., Jörnvall H. & Parés X. (1996) Arabidopsis formaldehyde dehydrogenase. Molecular properties of plant class III alcohol dehydrogenase provide further insights into the origins, structure and function of plant class p and liver class I alcohol dehydrogenases. European Journal of Biochemistry 241, 849857.
  • Martinoia E., Grill E., Tommasini R., Kreuz K. & Amrhein N. (1993) ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364, 247249.
  • Marty L., Siala W., Schwarzländer M., Fricker M.D., Wirtz M., Sweetlove L.J., Meyer Y., Meyer A.J., Reichheld J.P. & Hell R. (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106, 91099114.
  • Maruyama-Nakashita A., Inoue E., Watanabe-Takahashi A., Yamaya T. & Takahashi H. (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiology 132, 597605.
  • Masi A., Destro T., Turetta L., Varotto S., Caporale G. & Ferretti M. (2007) Localization of gamma-glutamyl transferase activity and protein in Zea mays organs and tissues. Journal of Plant Physiology 164, 15271535.
  • Mateo A., Funck D., Mühlenbock P., Kular B., Mullineaux P.M. & Karpinski S. (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. Journal of Experimental Botany 57, 17951807.
  • Maughan S.C., Pasternak M., Cairns N., et al. (2010) Plant homologs of the Plasmodium falciparum chloroquinone-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proceedings of the National Academy of Sciences of the United States of America 107, 23312336.
  • May M.J. & Leaver C.J. (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiology 103, 621627.
  • May M.J. & Leaver C.J. (1994) Arabidopsis thaliana γ−glutamylcysteine synthetase is structurally unrelated to mammalian, yeast and Escherichia coli homologs. Proceedings of the National Academy of Sciences of the United States of America 91, 1005910063.
  • May M.J., Hammond-Kosack K.E. & Jones J.D.G. (1996a) Involvement of reactive oxygen species, glutathione metabolism and lipid peroxidation in the Cf-gene-dependent defence response of tomato cotyledons induced by race-specific elicitors of Cladosporium fulvum. Plant Physiology 110, 13671379.
  • May M.J., Parker J.E., Daniels M.J., Leaver C.J. & Cobbett C.S. (1996b) An Arabidopsis mutant depleted in glutathione shows unaltered responses to fungal and bacterial pathogens. Molecular Plant-Microbe Interactions 9, 349356.
  • May M.J., Vernoux T., Sánchez-Fernández R., Van Montagu M. & Inzé D. (1998) Evidence for post-transcriptional activation of γ-glutamylcysteine synthetase during plant stress responses. Proceedings of the National Academy of Sciences of the United States of America 95, 1204912054.
  • Meister A. (1988) Glutathione metabolism and its selective modification. Journal of Biological Chemistry 263, 1720517208.
  • Meister A. (1994) Glutathione-ascorbic acid system in animals. Journal of Biological Chemistry 269, 93979400.
  • Mendoza-Cózatl D.G., Butko E., Springer F., Torpey J.W., Komives E.A., Kehr J. & Schroeder J.I. (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. The Plant Journal 54, 249259.
  • Menon S.G. & Goswami P.C. (2007) A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26, 11011109.
  • Meuwly P., Thibault P. & Rauser W.E. (1993) γ-Glutamylcysteinylglutamic acid – a new homologue of glutathione in maize seedlings exposed to cadmium. FEBS Letters 336, 472476.
  • Meyer A.J. (2008) The integration of glutathione homeostasis and redox signaling. Journal of Plant Physiology 165, 13901403.
  • Meyer A.J., Brach T., Marty L., Kreye S., Rouhier N., Jacquot J.P. & Hell R. (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. The Plant Journal 52, 973986.
  • Meyer Y., Siala W., Bashandy T., Riondet C., Vignols F. & Reichheld J.P. (2008) Glutaredoxins and thioredoxins in plants. Biochimica et Biophysica Acta 1783, 589600.
  • Mhamdi A., Hager J., Chaouch S., et al. (2010a) Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf responses to intracellular H2O2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiology 153, 11441160.
  • Mhamdi A., Mauve C., Gouia H., Saindrenan P., Hodges M. & Noctor G. (2010b) Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant, Cell & Environment 33, 11121123.
  • Miao Y., Lv D., Wang P., Wang X.C., Chen J., Miao C., & Song C.P. (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought responses. The Plant Cell 18, 27492766.
  • Michelet L., Zaffagnini M., Marchand C., et al. (2005) Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proceedings of the National Academy of Sciences of the United States of America 102, 1647816483.
  • Michelet L., Zaffagnini M., Vanacker H., Le Maréchal P., Marchand C., Schroda M., Lemaire S.D. & Decottignies P. (2008) In vivo targets of S-thiolation in Chlamydomonas reinhardtii. The Journal of Biological Chemistry 283, 2157121578.
  • Montrichard F., Alkhalfioui F., Yano H., Vensel W.H., Hurkman W.J. & Buchanan B.B. (2009) Thioredoxin targets in plants: the first 30 years. Journal of Proteomics 72, 452474.
  • Mou Z., Fan W. & Dong X. (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935944.
  • Mueller S., Hilbert B., Dueckershoff K., Roitsch T., Krischke M., Mueller M.J. & Berger S. (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. The Plant Cell 20, 768785.
  • Muhlenbock P., Szechynska-Hebda M., Płaszczyca M., Baudo M., Mullineaux P.M., Parker J.E., Karpinska B. & Karpinski S. (2008) Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. The Plant Cell 20, 23392356.
  • Mullineaux P.M. & Rausch T. (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynthesis Research 86, 459474.
  • Navrot N., Collin V., Gualberto J., Gelhaye E., Hirasawa M., Rey P., Knaff D.B., Issakidis E., Jacquot J.P. & Rouhier N. (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stress. Plant Physiology 142, 13641379.
  • Ndamukong I., Abdallat A.A., Thurow C., Fode B., Zander M., Weigel R. & Gatz C. (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. The Plant Journal 50, 128139.
  • Née G., Zaffagnini M., Trost P. & Issakidis-Bourguet E. (2009) Redox regulation of chloroplastic glucose-6-phosphate dehydrogenase: a new role for f-type thioredoxin. FEBS Letters 583, 28272832.
  • Newton G.L. & Javor B. (1985) γ-Glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria. Journal of Bacteriology 161, 438441.
  • Nikiforova V., Freitag J., Kempa S., Adamik M., Hesse H. & Hoefgen R. (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. The Plant Journal 33, 633650.
  • Noctor G., Strohm S., Jouanin L., Kunert K.J., Foyer C.H. & Rennenberg H. (1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing γ−glutamylcysteine synthetase. Plant Physiology 112, 10711078.
  • Noctor G., Arisi A.C.M., Jouanin L., Valadier M.H., Roux Y. & Foyer C.H. (1997) The role of glycine in determining the rate of glutathione synthesis in poplars. Possible implications for glutathione production during stress. Physiologia Plantarum 100, 255263.
  • Noctor G., Arisi A.C.M., Jouanin L. & Foyer C.H. (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiology 118, 471482.
  • Noctor G., Gomez L., Vanacker H. & Foyer C.H. (2002a) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of Experimental Botany 53, 12831304.
  • Noctor G., Veljovic-Jovanovic S., Driscoll S., Novitskaya L. & Foyer C.H. (2002b) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Annals of Botany 89, 841850.
  • Noji M. & Saito K. (2002) Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants. Amino Acids 22, 231243.
  • Oakley A.J., Yamada T., Liu D., Coggan M., Clark A.G. & Board P.G. (2008) The identification and structural characterization of C7orf24 as γ-glutamyl cyclotransferase. An essential enzyme in the γ-glutamyl cycle. Journal of Biological Chemistry 283, 2203122042.
  • Ogawa K., Hatano-Iwasaki A., Yanagida M. & Iwabuchi M. (2004) Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant & Cell Physiology 45, 18.
  • Ohkama-Ohtsu N., Radwan S., Peterson A., Zhao P., Badr A.F., Xiang C. & Oliver D.J. (2007a) Characterization of the extracellular γ-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. The Plant Journal 49, 865877.
  • Ohkama-Ohtsu N., Zhao P., Xiang C. & Oliver D.J. (2007b) Glutathione conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis. The Plant Journal 49, 878888.
  • Ohkama-Ohtsu N., Oikawa A., Zhao P., Xiang C., Saito K. & Oliver D.J. (2008) A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiology 148, 16031613.
  • Ohkama-Ohtsu N., Sasaki-Sekimoto Y., Oikawa A., et al. (2011) 12-oxo-phytodienoic acid-glutathione conjugate is transported into the vacuole in Arabidopsis. Plant & Cell Physiology 52, 205209.
  • Okumura R., Koizumi Y. & Sekiya J. (2003) Synthesis of hydroxymethylglutathione from glutathione and L-serine catalyzed by carboxypeptidase Y. Bioscience Biotechnology & Biochemistry 67, 434437.
  • Orlowski M. & Meister A. (1973) γ-Glutamyl cyclotransferase. Distribution, isozymic forms, and specificity. Journal of Biological Chemistry 248, 28362844.
  • Oven M., Raith K., Neubert R.H.H., Kutchan T.M. & Zenk M.H. (2001) Homo-phytochelatins are synthesized in response to cadmium in azuki beans. Plant Physiology 126, 12751280.
  • Palmieri M.C., Lindermayr C., Bauwe H., Steinhauser C. & Durner J. (2010) Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation. Plant Physiology 152, 15141528.
  • Parisy V., Poinssot B., Owsianowski L., Buchala A., Glazebrook J. & Mauch F. (2006) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. The Plant Journal 49, 159172.
  • Pasternak M., Lim B., Wirtz M., Hell R., Cobbett C.S. & Meyer A.J. (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. The Plant Journal 53, 9991012.
  • Pauly N., Pucciariello C., Mandon K., Innocenti G., Jamet A., Baudouin E., Hérouart D., Frendo P. & Puppo A. (2006) Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis. Journal of Experimental Botany 57, 17691776.
  • Pellny T.K., Locato V., Diaz-Vivancos P., Markovic J., De Gara L., Pallardo F.V. & Foyer C.H. (2009) Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Molecular Plant 2, 442456.
  • Peterson A.G. & Oliver D.J. (2006) Leaf-targeted phytochelatin synthase in Arabidopsis thaliana. Plant Physiology & Biochemistry 44, 885892.
  • Picault N., Cazalé A.C., Beyly A., Cuiné S., Carrier P., Luu D.T., Forestier C. & Peltier G. (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88, 17431750.
  • Pike S., Patel A., Stacey G. & Gassmann W. (2009) Arabidopsis OPT6 is an oligopeptide transporter with exceptionally broad substrate specificity. Plant & Cell Physiology 50, 19231932.
  • Pulido P., Spínola M.C., Kirchsteiger K., Guinea M., Pascual M.B., Sahrawy M., Sandalio L.M., Dietz K.J., González M. & Cejudo F.J. (2010) Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany 61, 40434054.
  • Queval G. & Noctor G. (2007) A plate-reader method for the measurement of NAD, NADP, glutathione and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Analytical Biochemistry 363, 5869.
  • Queval G., Issakidis-Bourguet E., Hoeberichts F.A., Vandorpe M., Gakière B., Vanacker H., Miginiac-Maslow M., Van Breusegem F. & Noctor G. (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. The Plant Journal 52, 640657.
  • Queval G., Thominet D., Vanacker H., Miginiac-Maslow M., Gakière B. & Noctor G. (2009) H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Molecular Plant 2, 344356.
  • Queval G., Jaillard D., Zechmann B. & Noctor G. (2011) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant, Cell & Environment 34, 2132.
  • Rasmusson A.G. & Møller I.M. (1990) NADP-utilizing enzymes in the matrix of plant mitochondria. Plant Physiology 94, 10121018.
  • Rea P.A. (1999) MRP subfamily transporters from plants and yeast. Journal of Experimental Botany 50, 895913.
  • Rea P.A., Vatamaniuk O.K. & Rigden D.J. (2004) Weeds, worms, and more. Papain's long-lost cousin, phytochelatin synthase. Plant Physiology 136, 24632474.
  • Reichheld J.P., Khafif M., Riondet C., Droux M., Bonnard G. & Meyer Y. (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. The Plant Cell 19, 18511865.
  • Rennenberg H. (1980) Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21, 27712781.
  • Rennenberg H., Steinkamp R. & Kesselmeier J. (1981) 5-Oxo-prolinase in Nicotiana tabacum: catalytic properties and subcellular localization. Physiologia Plantarum 52, 211224.
  • Richman P.G. & Meister A. (1975) Regulation of γ−glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione. Journal of Biological Chemistry 250, 14221426.
  • Rizhsky L., Hallak-Herr E., Van Breusegem F., Rachmilevitch S., Barr J.E., Rodermel S., Inzé D. & Mittler R. (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. The Plant Journal 32, 329342.
  • Rochon A., Boyle P., Wignes T., Fobert P.R. & Després C. (2006) The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal oxidases. The Plant Cell 18, 36703685.
  • Rodriguez Milla M.A., Maurer A., Huete A.R. & Gustafson J.P. (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. The Plant Journal 36, 602615.
  • Romero-Puertas M.C., Corpas F.J., Sandalio L.M., Leterrier M., Rodríguez-Serrano M., Del Río L.A. & Palma J.M. (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytologist 170, 4352.
  • Romero-Puertas M.C., Laxa M., Mattè A., Zaninotto F., Finkemeier I., Jones A.M.E., Perazzolli M., Vandelle E., Dietz K.J. & Delledonne M. (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. The Plant Cell 19, 41204130.
  • Romero-Puertas M.C., Campostrini N., Mattè A., Righetti P.G., Perazzolli M., Zolla L., Roepstorff P. & Delledonne M. (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8, 14591469.
  • Rouhier N. (2010) Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytologist 186, 365372.
  • Rouhier N., Gelhaye E. & Jacquot J.P. (2002) Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism. Journal of Biological Chemistry 277, 1360913614.
  • Rouhier N., Couturier J. & Jacquot J.P. (2006) Genome-wide analysis of plant glutaredoxin systems. Journal of Experimental Botany 57, 16851696.
  • Rouhier N., Unno H., Bandyopadhay S., et al. (2007) Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe-2S] cluster in poplar glutaredoxin C1. Proceedings of the National Academy of Sciences of the United States of America 104, 13731379.
  • Sakamoto A., Ueda M. & Morikawa H. (2002) Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Letters 515, 2024.
  • Sánchez-Fernández R., Ardiles-Díaz W., Van Montagu M., Inzé D. & May M.J. (1998) Cloning and expression analyses of AtMRP4, a novel MRP-like gene from Arabidopsis thaliana. Molecular and General Genetics 258, 655662.
  • Sappl P.G., Carroll A.J., Clifton R., Lister R., Whelan J., Millar A.H. & Singh K.B. (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing of multiple genes results in altered metabolic sensitivity to oxidative stress. The Plant Journal 58, 5368.
  • Sasaki-Sekimoto Y., Taki N., Obayashi T., et al. (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. The Plant Journal 44, 653668.
  • Schlaeppi K., Bodenhausen N., Buchala A., Mauch F. & Reymond P. (2008) The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. The Plant Journal 55, 774786.
  • Schneider A., Martini N. & Rennenberg H. (1992) Reduced glutathione (GSH) transport in cultured tobacco cells. Plant Physiology & Biochemistry 30, 2938.
  • Schwarzländer M., Fricker M.D., Müller C., Marty L., Brach T., Novak J., Sweetlove L.J., Hell R. & Meyer A.J. (2008) Confocal imaging of glutathione redox potential in living plant cells. Journal of Microscopy 231, 299316.
  • Sen Gupta A., Alscher R.G. & McCune D. (1991) Response of photosynthesis and cellular antioxidants to ozone in Populus leaves. Plant Physiology 96, 650655.
  • Senda K. & Ogawa K. (2004) Induction of PR-1 accumulation accompanied by runaway cell death in the lsd1 mutant of Arabidopsis is dependent on glutathione levels but independent of the redox state of glutathione. Plant & Cell Physiology 45, 15781585.
  • Setterdahl A.T., Chivers P.T., Hirasawa M., et al. (2003) Effect of pH on the oxidation-reduction properties of thioredoxins. Biochemistry 42, 1487714884.
  • Singla-Pareek S.L., Reddy M.K. & Sopory S.K. (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proceedings of the National Academy of Sciences of the United States of America 100, 1467214677.
  • Singla-Pareek S.L., Yadav S.K., Pareek A., Reddy M.K. & Sopory S.K. (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Research 17, 171180.
  • Skipsey M., Davis B.G. & Edwards R. (2005a) Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays). Biochemical Journal 391, 567574.
  • Skipsey M., Cummins I., Andrews C.J., Jepson I. & Edwards R. (2005b) Manipulation of plant tolerance to herbicides through co-ordinated metabolic engineering of a detoxifying glutathione transferase and thiol cosubstrate. Plant Biotechnology Journal 3, 409420.
  • Smith I.K., Kendall A.C., Keys A.J., Turner J.C. & Lea P.J. (1984) Increased levels of glutathione in a catalase-deficient mutant of barley (Hordeum vulgare L.). Plant Science Letters 37, 2933.
  • Smith I.K., Kendall A.C., Keys A.J., Turner J.C. & Lea P.J. (1985) The regulation of the biosynthesis of glutathione in leaves of barley (Hordeum vulgare L.). Plant Science 41, 1117.
  • Smith I.K., Vierheller T.L. & Thorne C.A. (1989) Properties and functions of glutathione reductase in plants. Physiologia Plantarum 77, 449456.
  • Spoel S.H., Koornneef A., Claessens S.M.C., et al. (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell 15, 760770.
  • Steinkamp R. & Rennenberg H. (1984) γ-Glutamyltranspeptidase in tobacco suspension cultures: catalytic properties and subcellular localization. Physiologia Plantarum 61, 251256.
  • Steinkamp R. & Rennenberg H. (1985) Degradation of glutathione in plant cells: evidence against the participation of a γ-glutamyltranspeptidase. Zeitschrift für Naturforschung Section C 40, 2933.
  • Steinkamp R., Schweihofen B. & Rennenberg H. (1987) γ-Glutamylcyclotransferase in tobacco suspension cultures: catalytic properties and subcellular localization. Physiologia Plantarum 69, 499503.
  • Stevens R.G., Creissen G.P. & Mullineaux P.M. (2000) Characterisation of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211, 537545.
  • Storozhenko S., Belles-Boix E., Babiychuk E., Hérouart D., Davey M.R., Slooten L., Van Montagu M., Inzé D. & Kushnir S. (2002) γ-Glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiology 128, 11091119.
  • Strohm M., Jouanin L., Kunert K.J., Pruvost C., Polle A., Foyer C.H. & Rennenberg H. (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P.alba) overexpressing glutathione synthetase. The Plant Journal 7, 141145.
  • Su T., Xu J., Li Y., Lei L., Zhao L., Yang H., Feng J., Liu G. & Ren D. (2011) Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. The Plant Cell 23, 364380.
  • Sundaram S. & Rathinasabapathi B. (2010) Transgenic expression of fern Pteris vittata glutaredoxin PvGrx5 in Arabidopsis thaliana increases plant tolerance to high temperature stress and reduces oxidative damage to proteins. Planta 231, 361369.
  • Sung D.Y., Lee D., Harris H., Raab A., Feldmann J., Meharg A., Kumabe B., Komives E.A. & Schroeder J.I. (2007) Identification of an arsenic tolerant double mutant with a thiol-mediated component and increased arsenic tolerance in phyA mutants. The Plant Journal 49, 10641075.
  • Sung D.Y., Kim T.H., Komives E.A., Mendoza-Cózatl D.G. & Schroeder J.I. (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. The Plant Journal 59, 802813.
  • Tada Y., Spoel S.H., Pajerowska-Mukhtar K., Mou Z., Song J., Wang C., Zuo J. & Dong X. (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321, 952956.
  • Tarrago L., Laugier E., Zaffagnini M., Marchand C., Le Maréchal P., Rouhier N., Lemaire S.D. & Rey P. (2009) Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins. Journal of Biological Chemistry 284, 1896318971.
  • Tausz M., Sircelj H. & Grill D. (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? Journal of Experimental Botany 55, 19551962.
  • Taylor N.L., Day D.A. & Millar A.H. (2002) Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. Journal of Biological Chemistry 277, 4266342668.
  • Thatcher L.F., Carrie C., Andersson C.R., Sivasithamparam K., Whelan J. & Singh K.B. (2007) Differential gene expression and subcellular targeting of Arabidopsis glutathione-S-transferase F8 is achieved through alternative transcription start sites. The Journal of Biological Chemistry 282, 2891528928.
  • Tommasini R., Martinoia E., Grill E., Dietz K.J. & Amrhein N. (1993) Transport of oxidized glutathione into barley vacuoles: evidence for the involvement of the glutathione-S-conjugate ATPase. Zeitschrift für Naturforschung Section C 48, 867871.
  • Tripathi B.N., Bhatt I. & Dietz K.J. (2009) Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235, 315.
  • Tsakraklides G., Martin M., Chalam R., Tarczynski M.C., Schmidt A. & Leustek T. (2002) Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5′-adenylylsulfate reductase from Pseudomonas aeruginosa. The Plant Journal 32, 879889.
  • Tzafrir I., Pena-Muralla R., Dickerman A., et al. (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiology 135, 12061220.
  • Ullman P., Gondet L., Potier S. & Bach T.J. (1996) Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant. European Journal of Biochemistry 236, 662669.
  • Vanacker H., Carver T.L.W. & Foyer C.H. (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiology 117, 11031114.
  • Vanacker H., Carver T.L.W. & Foyer C.H. (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction. Plant Physiology 123, 12891300.
  • Vanderauwera S., Zimmermann P., Rombauts S., Vandenabeele S., Langebartels C., Gruissem W., Inzé D. & Van Breusegem F. (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiology 139, 806821.
  • Vanlerberghe G.C., Day D.A., Wiskich J.T., Vanlerberghe A.E. & McIntosh L. (1995) Alternative oxidase activity in tobacco leaf mitochondria. Dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiology 109, 353361.
  • Vauclare P., Kopriva S., Fell D., Suter M., Sticher L., von Ballmoos P., Krähenbühl U., den Camp R.O. & Brunold C. (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. The Plant Journal 31, 729740.
  • Vernoux T., Wilson R.C., Seeley K.A., et al. (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. The Plant Cell 12, 97110.
  • Voehringer D.W., McConkey D.J., McDonnell T.J., Brisbay S. & Meyn R.E. (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus. Proceedings of the National Academy of Sciences of the United States of America 95, 29562960.
  • Wachter A., Wolf S., Steiniger H., Bogs J. & Rausch T. (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. The Plant Journal 41, 1530.
  • Wagner U., Edwards R., Dixon D.P. & Mauch F. (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology 49, 515532.
  • Wang W. & Ballatori N. (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharmacological Reviews 50, 335355.
  • Wang Z., Xing S., Birkenbihl R. & Zachgo S. (2009) Conserved functions of rice and Arabidopsis CC-type glutaredoxins in flower development and pathogen response. Molecular Plant 2, 323325.
  • Watanabe M., Mochida K., Kato T., Tabata S., Yoshimoto N., Noji M. & Saito K. (2008) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. The Plant Cell 20, 24842496.
  • Welinder K.G. (1992) Superfamily of plant, fungal and bacterial peroxidases. Current Opinion in Structural Biology 2, 388393.
  • Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montagu M., Inzé D. & Van Camp W. (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. The EMBO Journal 16, 48064816.
  • Wingate V.P., Lawton M.A. & Lamb C.J. (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiology 87, 206210.
  • Wirtz M. & Hell R. (2007) Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. The Plant Cell 19, 625639.
  • Wolf A.E., Dietz K.J. & Schröder P. (1996) Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Letters 384, 3134.
  • Wolosiuk R.A. & Buchanan B.B. (1977) Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266, 565567.
  • Xiang C. & Bertrand D. (2000) Glutathione synthesis in Arabidopsis: multilevel controls coordinate responses to stress. In Sulfur Nutrition and Sulphur Assimilation in Higher Plants (eds C. Brunold, H. Rennenberg, L.J. De Kok, I. Stulen & J.C. Davidian), pp. 409412. Paul Haupt, Bern, Switzerland.
  • Xiang C. & Oliver D.J. (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. The Plant Cell 10, 15391550.
  • Xiang C., Werner B.L., Christensen E.M. & Oliver D.J. (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiology 126, 564574.
  • Yan Y., Stolz S., Chétalat A., Reymond P., Pagni M., Dubugnon L. & Farmer E.E. (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. The Plant Cell 19, 24702483.
  • Zaffagnini M., Michelet L., Marchand C., et al. (2007) The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation. FEBS Journal 274, 212226.
  • Zaffagnini M., Michelet L., Massot V., Trost P. & Lemaire S.D. (2008) Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii reveals the unique properties of a chloroplastic CGFS-type glutaredoxin. Journal of Biological Chemistry 283, 88688876.
  • Zámocky M., Furtmüller P.G. & Obinger C. (2010) Evolution of structure and function of Class I peroxidases. Archives of Biochemistry and Biophysics 500, 4557.
  • Zechmann B., Zellnig G., Urbanek-Krajnc A. & Müller M. (2007) Artifical elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. plants. Archives of Virology 152, 747762.
  • Zechmann B., Mauch F., Sticher L. & Müller M. (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. Journal of Experimental Botany 59, 40174027.
  • Zechmann B., Koffler B.E. & Russell S.D. (2011) Glutathione synthesis is essential for pollen germination in vitro. BMC Plant Biology 11, 54.
  • Zhang M.Y., Bourbouloux A., Cagnac O., Srikanth C.V., Rentsch D., Bachhawat A.K. & Delrot S. (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiology 134, 482491.
  • Zhu Y.L., Pilon-Smits E.A.H., Tarun A.S., Weber S.U., Jouanin L. & Terry N. (1999a) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiology 121, 11691177.
  • Zhu Y.L., Pilon-Smits E.A.H., Jouanin L. & Terry N. (1999b) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiology 119, 7379.
  • Ziemann M., Bhave M. & Zachgo S. (2009) Origin and diversification of land plant CC-type glutaredoxins. Genome Biology Evolution 1, 265277.