Active ROP2 GTPase inhibits ABA- and CO2-induced stomatal closure


Y. Lee. Fax: +82 54 279 2199; e-mail:


ROP GTPases function as molecular switches in diverse cellular processes. Previously, we showed that ROP2 GTPase is activated upon light irradiation, and thereby negatively regulates light-induced stomatal opening. Here we studied the role of ROP2 during stomatal closure. The expression of a constitutively active form of ROP2 (CA-rop2) in Arabidopsis thaliana and Vicia faba resulted in slower and reduced stomatal closure in response to abscisic acid (ABA) and CO2. In contrast, the expression of a dominant-negative form of ROP2 (DN-rop2) and the knockout mutation of ROP2 (rop2 KO) promoted ABA-induced stomatal closure in Arabidopsis. As early as 10 min after ABA treatment, ROP2 was inactivated and translocated to the cytoplasm of the stomatal guard cells. To elucidate the mechanism by which active ROP2 suppresses stomatal closure, we monitored endocytotic membrane trafficking, which is regulated by Rho GTPases in animal cells. We found that the endocytosis of plasma membrane (PM), as tracked by FM4-64, was lower in CA-rop2-expressing guard cells than in those of wild-type plants, which suggests that active ROP2 suppresses the endocytotic internalization of PM, a process required for stomatal closure. Together, our results suggest that ROP2 is inactivated by ABA, and that this inactivation is required for the timely stomatal closure.