SEARCH

SEARCH BY CITATION

REFERENCES

  • Aikman D.P. (1980) Contractile proteins and hypotheses concerning their role in phloem transport. Canadian Journal of Botany. Journal Canadien De Botanique 58, 826832.
  • Bansal S. & Germino M.J. (2009) Temporal variation of nonstructural carbohydrates in montane conifers: similarities and differences among developmental stages, species and environmental conditions. Tree Physiology 29, 559568.
  • Becker P., Tyree M.T. & Tsuda M. (1999) Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level. Tree Physiology 19, 445452.
  • Bond W.J. (1989) The tortoise and the hare – ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society. Linnean Society of London 36, 227249.
  • Bruus H. (2008) Theoretical Microfluidics. Oxford University Press, Oxford, OH, USA.
  • Carlquist S.J. (1975) Ecological Strategies of Xylem Evolution. University of California Press, Berkeley and Los Angeles, CA, USA.
  • Chang Y.-P. (1954a) Anatomy of Common North American Pulpwood Barks. Tappi Monograph Series. Vol. 14. Technical Association of the Pulp and Paper Industry, New York, NY, USA.
  • Chang Y.-P. (1954b) Bark Structure of North American Conifers. U.S. Department of Agriculture, Washington, DC, WA, USA.
  • Crafts A.S. (1939) The relation between structure and function of the phloem. American Journal of Botany 26, 172177.
  • Crafts A.S. & Crisp C. (1971) Phloem Transport in Plants. W.H. Freeman and Company, San Francisco, CA, USA.
  • Cranswick A., Rook D. & Zabkiewicz J. (1987) Seasonal changes in carbohydrate concentration and composition of different tissue types of Pinus radiata trees. New Zealand Journal of Forestry Science 2/3, 229245.
  • Dannoura M., Maillard P., Fresneau C., et al. (2011) In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO(2) efflux after pulse labelling: variations among tree species and seasons. New Phytologist 190, 181192.
  • Ericsson A. & Persson H. (1980) Seasonal changes in starch reserves and growth of fine roots of 20-year-old Scots pines. Ecological Bulletins 32, 239250.
  • Esau K. (1969) The Phloem Vol. 5, Part 2. Gebr. Borntraeger, Stuttgart, Germany.
  • Evert R.F. (1984) Comparative structure of phloem. In Contemporary Problems in Plant Anatomy (eds R.A. White & W.C. Dickinson), pp. 145234. Academic Press, Orlando, FL, USA.
  • Holbrook N.M. & Zwieniecki M.A. (2005) Vascular Transport in Plants. Elsevier Academic Press, San Diego, CA, USA.
  • Jensen K.H., Rio E., Hansen R., Clanet C. & Bohr T. (2009) Osmotically driven pipe flows and their relation to sugar transport in plants. Journal of Fluid Mechanics 636, 371396.
  • Jensen K.H., Lee J., Bohr T., Bruus H., Holbrook N.M. & Zwieniecki M.A. (2011) Optimality of the Münch mechanism for translocation of sugars in plants. Journal of the Royal Society Interface 8, 11551165.
  • Knoblauch M. & Peters W.S. (2010) Münch, morphology, microfluidics – our structural problem with the phloem. Plant, Cell & Environment 33, 14391452.
  • Kollmann R. (1975) Sieve element structure in relation to function. In Phloem Transport (eds S. Aronoff, J. Dainty, P. Gorham, L. Srivastava & C. Swanson), pp. 225242. Plenum Press, New York, NY, USA.
  • Lang A. (1979) Relay mechanism for phloem translocation. Annals of Botany 44, 141145.
  • Liesche J., Martens H.J. & Schulz A. (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248, 181190.
  • Millburn J. & Kallarackal J. (1989) Physiological aspects of phloem translocation. In Transport of Photoassimilates (eds D. Baker & J. Milburn), pp. 264305. John Wiley & Sons, New York, NY, USA.
  • Minchin P.E.H., Thorpe M.R. & Farrar J.F. (1993) A simple mechanistic model of phloem transport which explains sink priority. Journal of Experimental Botany 44, 947955.
  • Mullendore D.L., Windt C.W., Van As H. & Knoblauch M. (2010) Sieve tube geometry in relation to phloem flow. The Plant Cell 22, 579593.
  • Münch E. (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena, Germany.
  • Nielsen C.H. (2010) Major intrinsic proteins in biomimetic membranes. Advances in Experimental Medicine and Biology 679, 127142.
  • Niklas K. (1994) Plant Allometry: The Scaling of Form and Process. The University of Chicago Press, Chicago, IL, USA.
  • Pickard W.F. & Abraham-Shrauner B. (2009) A ‘simplest’ steady-state Münch-like model of phloem translocation, with source and pathway and sink. Functional Plant Biology 36, 629644.
  • Plain C., Gerant D., Maillard P., Dannoura M., Dong Y.W., Zeller B., Priault P., Parent F. & Epron D. (2009) Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ (CO2)-C-13 pulse labelling of 20-year-old beech trees. Tree Physiology 29, 14331445.
  • Rennie E.A. & Turgeon R. (2009) A comprehensive picture of phloem loading strategies. Proceedings of the National Academy of Sciences of the United States of America 106, 1416214167.
  • Schulz A. (1990) Conifers. In Comparative Structure, Induction and Development (eds H.-D. Behnke & R.D. Sjolund), pp. 6388. Springer Verlag, Berlin, Heidelberg, Germany; New York, NY, USA.
  • Schulz A. (1992) Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy. Protoplasma 166, 153164.
  • Schulz A. & Behnke H.-D. (1987) Feinbau und Differenzierung des Phloems von Buchen, Fichten und Tannen aus Waldschadensgebieten. Abschluβbericht des Forschungsprojekts. Kernforschungszentrum Karlsruhe – PEF-Berichte 16.
  • Sevanto S., Vesala T., Peramaki M. & Nikinmaa E. (2003) Sugar transport together with environmental conditions controls time lags between xylem and stem diameter changes. Plant, Cell & Environment 26, 12571265.
  • Taylor J.R. (1997) An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, Sausalito, CA, USA.
  • Thompson M.V. & Holbrook N.M. (2003a) Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. Journal of Theoretical Biology 220, 419455.
  • Thompson M.V. & Holbrook N.M. (2003b) Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant, Cell & Environment 26, 15611577.
  • Thompson R.G., Fensom D.S., Anderson R.R., Drouin R. & Leiper W. (1979) Translocation of C-11 from leaves of Helianthus, Heracleum, Nymphoides, Ipomoea, Tropaeolum, Zea, Fraxinus, Ulmus, Picea, and Pinus – comparative shapes and some fine-structure profiles. Canadian Journal of Botany. Journal Canadien De Botanique 57, 845863.
  • Turgeon R. (2010) The puzzle of phloem pressure. Plant Physiology 154, 578581.
  • Watson B.T. (1980) Effect of cooling on the rate of phloem translocation in the stems of 2 gymnosperms, Picea sitchensis and Abies procera. Annals of Botany 45, 219223.
  • Webb W.L. & Kilpatrick K.J. (1993) Starch content in Douglas fir – diurnal and seasonal dynamics. Forest Science 39, 359367.
  • Willenbrink J. & Kollmann R. (1966) Über den Assimilattransport im Phloem von Metasequoia. Zeitschrift für Pflanzenphysiologie 55, 4253.
  • Windt C.W., Vergeldt F.J., De Jager P.A. & Van As H. (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant, Cell & Environment 29, 17151729.
  • Yang W.Q., Murthy R., King P. & Topa M.A. (2002) Diurnal changes in gas exchange and carbon partitioning in needles of fast- and slow-growing families of loblolly pine (Pinus taeda). Tree Physiology 22, 489498.