SEARCH

SEARCH BY CITATION

REFERENCES

  • Aki T., Shigyo M., Nakano R., Yoneyama T. & Yanagisawa S. (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant and Cell Physiology 49, 767790.
  • Arsanto J.P. (1982) Observations on P-protein in dicotyledons. Substructural and developmental features. American Journal of Botany 69, 12001212.
  • Balachandran S., Xiang Y., Schobert C., Thompson G.A. & Lucas W.J. (1997) Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proceedings of the National Academy of Sciences of the United States of America 94, 1415014155.
  • Barnes A., Bale J., Constantinidou C., Ashton P., Jones A. & Pritchard J. (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. Journal of Experimental Botany 55, 14731481.
  • Bayer E.M., Bottrill A.R., Walshaw J., Vigouroux M., Naldrett M.J., Thomas C.L. & Maule A.J. (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6, 301311.
  • Behnke H.D. (1991) Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bulletin 12, 143175.
  • van Bel A.J.E. (2003) The phloem, a miracle of ingenuity. Plant, Cell & Environment 26, 125149.
  • van Bel A.J.E., Furch A.C.U., Hafke J.B., Knoblauch M. & Patrick J.W. (2011a) Questions)n on phloem biology. 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling. Plant Science 181, 325330.
  • van Bel A.J.E., Knoblauch M., Furch A.C.U. & Hafke J.B. (2011b) (Questions)n on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Science 181, 210218.
  • Beneteau J., Renard D., Marche L., Douville E., Lavenant L., Rahbe Y., Dupont D., Vilaine F. & Dinant S. (2010) Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis. Plant Physiology 153, 13451361.
  • Berkowitz O., Jost R., Pollmann S. & Masle J. (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. The Plant Cell 20, 34303447.
  • Bernard S.M. & Habash D.Z. (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. The New Phytologist 182, 608620.
  • Blokhina O. & Fagerstedt K.V. (2010) Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiology and Biochemistry 48, 359373.
  • Borderies G., Jamet E., Lafitte C., Rossignol M., Jauneau A., Boudart G., Monsarrat B., Esquerre-Tugaye M.T., Boudet A. & Pont-Lezica R. (2003) Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis 24, 34213432.
  • Bostwick D.E., Dannenhoffer J.M., Skaggs M.I., Lister R.M., Larkins B.A. & Thompson G.A. (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. The Plant Cell 4, 15391548.
  • Bostwick D.E., Skaggs M.I. & Thompson G.A. (1994) Organization and characterization of Cucurbita phloem lectin genes. Plant Molecular Biology 26, 887897.
  • Boudart G., Jamet E., Rossignol M., Lafitte C., Borderies G., Jauneau A., Esquerré-Tugayé M.-T. & Pont-Lezica R. (2005) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5, 212221.
  • Boyes D.C., Zayed A.M., Ascenzi R., McCaskill A.J., Hoffman N.E., Davis K.R. & Gorlach J. (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. The Plant Cell 13, 14991510.
  • Brioudes F., Thierry A.-M., Chambrier P., Mollereau B. & Bendahmane M. (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proceedings of the National Academy of Sciences of the United States of America 107, 1638416389.
  • Busse J.S. & Evert R.F. (1999) Pattern of differentiation of the first vascular elements in the embryo and seedling of Arabidopsis thaliana. International Journal of Plant Sciences 160, 113.
  • Charmont S., Jamet E., Pont-Lezica R. & Canut H. (2005) Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds. Phytochemistry 66, 453461.
  • Chivasa S., Ndimba B.K., Simon W.J., Robertson D., Yu X.-L., Knox J.P., Bolwell P. & Slabas A.R. (2002) Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23, 17541765.
  • Clark A.M., Jacobsen K.R., Bostwick D.E., Dannenhoffer J.M., Skaggs M.I. & Thompson G.A. (1997) Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima. The Plant Journal 12, 4961.
  • Corbesier L., Vincent C., Jang S., et al. (2007) FT protein movement contributes to long-distance dignaling in floral induction of Arabidopsis. Science 316, 10301033.
  • Cronshaw J. & Esau K. (1968) P-protein in the phloem of Cucurbita. I. The development of P-protein bodies. The Journal of Cell Biology 38, 2539.
  • Cronshaw J. & Sabnis D.D. (1990) Phloem proteins. In Sieve Elements: Comparative Structure, Induction and Development (eds H.D. Behnke & R.D. Sjölund), pp. 257283. Springer-Verlag, Berlin, Germany.
  • Dannenhoffer J.M., Schulz A., Skaggs M.I., Bostwick D.E. & Thompson G.A. (1997) Expression of the phloem lectin is developmentally linked to vascular differentiation in cucurbits. Planta 201, 405414.
  • De Hoff P., Brill L. & Hirsch A. (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Molecular Genetics and Genomics 282, 115.
  • Deeken R., Ache P., Kajahn I., Klinkenberg J., Bringmann G. & Hedrich R. (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. The Plant Journal 55, 746759.
  • Dinant S. & Lemoine R. (2010) The phloem pathway: new issues and old debates. Comptes Rendus Biologies 333, 307319.
  • Dinant S. & Lucas W.J. (2012) Sieve elements: puzzling activities deciphered by proteomics studies. In Biochemistry of Phloem (eds G.A. Thompson & A.J.E. van Bel). Wiley & Sons, Chichester, UK.
  • Dinant S. & Suárez-López P. (2012) Multitude of signal molecules acting long-distance via phloem. In Signaling and Communication in Plants (eds G. Witzany & F. Baluška). Springer series.
  • Dinant S., Clark A.M., Zhu Y., Vilaine F., Palauqui J.C., Kusiak C. & Thompson G.A. (2003) Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiology 131, 114128.
  • Dinant S., Bonnemain J., Girousse C. & Kehr J. (2010) Phloem sap intricacy and interplay with aphid feeding. Comptes Rendus Biologies 333, 504515.
  • van Dongen J.T., Schurr U., Pfister M. & Geigenberger P. (2003) Phloem metabolism and function have to cope with low internal oxygen. Plant Physiology 131, 15291543.
  • van Dongen J.T., Roeb G.W., Dautzenberg M., Froehlich A., Vigeolas H., Minchin P.E. & Geigenberger P. (2004) Phloem import and storage metabolism are highly coordinated by the low oxygen concentrations within developing wheat seeds. Plant Physiology 135, 18091821.
  • Ehlers K., Knoblauch M. & van Bel A. (2000) Ultrastructural features of well-preserved and injured sieve elements: minute clamps keep the phloem transport conduits free for mass flow. Protoplasma 214, 8092.
  • Eleftheriou E.P. (1990) Monocotyledons. In Sieve Elements: Comparative Structure, Induction and Development (eds H.D. Behnke & R.D. Sjölund), pp. 139156. Springer Verlag, New York.
  • Esau K. (1969) The sieve element. In The Phloem. Encyclopedia of Plant Anatomy (eds W. Zimmerman, P.P. Ozenda & D.F. Wulff), pp. 17115. Gebrüder Borntraegger, Stuttgart, Germany.
  • Evert R. (1990) Dicotyledons. In Sieve Elements: Comparative Structure, Induction and Development (eds H.D. Behnke & R.D. Sjölund), pp. 103137. Springer Verlag, New York.
  • Fiehn O. (2003) Metabolic networks of Cucurbita maxima phloem. Phytochemistry 62, 875886.
  • Gaupels F., Knauer T. & van Bel A.J.E. (2008) A combinatory approach for analysis of protein sets in barley sieve-tube samples using EDTA-facilitated exudation and aphid stylectomy. Journal of Plant Physiology 165, 95103.
  • Geigenberger P. (2003) Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology 6, 247256.
  • Geigenberger P., Langenberger S., Wilke I., Heineke D., Heldt H.W. & Stitt M. (1993) Sucrose is metabolised by sucrose synthase and glycolysis within the phloem complex of Ricinus communis L. seedlings. Planta 190, 446453.
  • Giakountis A. & Coupland G. (2008) Phloem transport of flowering signals. Current Opinion in Plant Biology 11, 687694.
  • Giavalisco P., Kapitza K., Kolasa A., Buhtz A. & Kehr J. (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6, 896909.
  • Golecki B., Schulz A., Carstens-Behrens U. & Kollmann R. (1998) Evidence for graft transmission of structural phloem proteins or their precursors in heterografts of Cucurbitaceae. Planta 206, 630640.
  • Golecki B., Schulz A. & Thompson G.A. (1999) Translocation of structural P proteins in the phloem. The Plant Cell 11, 127140.
  • Ham B.K., Brandom J.L., Xoconostle-Cazares B., Ringgold V., Lough T.J. & Lucas W.J. (2009) A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. The Plant Cell 21, 197215.
  • Hayashi H., Fukuda A., Suzui N. & Fujimaki S. (2000) Proteins in the sieve element-companion cell complexes: their detection, localization and possible functions. Functional Plant Biology 27, 489496.
  • Hunt E.J., Pritchard J., Bennett M.J., Zhu X., Barrett D.A., Allen T., Bale J.S. & Newbury H.J. (2006) The Arabidopsis thaliana/Myzus persicae model system demonstrates that a single gene can influence the interaction between a plant and a sap-feeding insect. Molecular Ecology 15, 42034213.
  • Hunt E., Gattolin S., Newbury H.J., Bale J.S., Tseng H.-M., Barrett D.A. & Pritchard J. (2010) A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. Journal of Experimental Botany 61, 5564.
  • Irshad M., Canut H., Borderies G., Pont-Lezica R. & Jamet E. (2008) A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biology 8, 94.
  • Ito J., Batth T.S., Petzold C.J., Redding-Johanson A.M., Mukhopadhyay A., Verboom R., Meyer E.H., Millar A.H. & Heazlewood J.L. (2011) Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. Journal of Proteome Research 10, 15711582.
  • Jamet E., Canut H., Boudart G. & Pont-Lezica R.F. (2006) Cell wall proteins: a new insight through proteomics. Trends in Plant Science 11, 3339.
  • Kehr J. (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. Journal of Experimental Botany 57, 767774.
  • Kenneke K., Ziegler M. & De Fekete M.A.R. (1971) Enzymaktivitäten im Siebröhrensaft von Robinia pseudoacacia L. und anderer Baumarten. Planta 98, 330356.
  • Khan J.A., Wang Q., Sjölund R.D., Schulz A. & Thompson G.A. (2007) An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis. Plant Physiology 143, 15761589.
  • King R.W. & Zeevaart J.A.D. (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiology 53, 96103.
  • Knoblauch M. & Peters W.S. (2010) Münch, morphology, microfluidics – our structural problem with the phloem. Plant, Cell & Environment 33, 14391452.
  • Knoblauch M., Peters W.S., Ehlers K. & van Bel A.J. (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. The Plant Cell 13, 12211230.
  • Koch K. (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7, 235246.
  • Kwon H.-K., Yokoyama R. & Nishitani K. (2005) A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells. Plant and Cell Physiology 46, 843857.
  • Lehmann J. (1973a) Studies on the phloem exudate of Cucurbita pepo L. I. Enzyme activities of aerobic and anaerobic glycolysis and of the citric acid cycle. Planta 114, 4150.
  • Lehmann J. (1973b) Studies on the phloem exudate of Cucurbita pepo L. II. Enzyme activities of gluconeogenesis and of the synthesis and degradation of di- and polysaccharides. Planta 114, 5161.
  • Lin M.K., Lee Y.J., Lough T.J., Phinney B.S. & Lucas W.J. (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Molecular and Cellular Proteomics 8, 343356.
  • Lin M.-K., Belanger H., Lee Y.J., et al. (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. The Plant Cell 19, 14881506.
  • Lothier J., Gaufichon L., Sormani R., Lemaître T., Azzopardi M., Morin H., Chardon F., Reisdorf-Cren M., Avice J.-C. & Masclaux-Daubresse C. (2011) The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting. Journal of Experimental Botany 62, 13751390.
  • Malter D. & Wolf S. (2011) Melon phloem-sap proteome: developmental control and response to viral infection. Protoplasma 248, 217224.
  • Martin T., Frommer W.B., Salanoubat M. & Willmitzer L. (1993) Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. The Plant Journal 4, 367377.
  • Masclaux-Daubresse C., Reisdorf-Cren M., Pageau K., Lelandais M., Grandjean O., Kronenberger J., Valadier M.-H., Feraud M., Jouglet T. & Suzuki A. (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiology 140, 444456.
  • Masuda H., Komiyama S. & Sugawara S. (1988) Extraction of enzymes from cell walls of sugar beet cells grown in suspension culture. Plant and Cell Physiology 29, 623627.
  • Masuda H., Komiyama S. & Sugawara S. (1989) Cell wall proteins from sugar beet cells in suspension culture. Plant Physiology 89, 712716.
  • Miyashita Y., Dolferus R., Ismond K.P. & Good A.G. (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. The Plant Journal 49, 11081121.
  • Mustroph A., Zanetti M.E., Jang C.J.H., Holtan H.E., Repetti P.P., Galbraith D.W., Girke T. & Bailey-Serres J. (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106, 1884318848.
  • Newman G.R. & Hobot J.A. (1999) Resins for combined light and electron microscopy: a half century of development. The Histochemical Journal 31, 495505.
  • Ngai N., Tsai F.Y. & Coruzzi G. (1997) Light-induced transcriptional repression of the pea AS1 gene: identification of cis-elements and transfactors. The Plant Journal 12, 10211034.
  • Oparka K.J. & Turgeon R. (1999) Sieve elements and companion cells-traffic control centers of the phloem. The Plant Cell 11, 739750.
  • Provart N. & Zhu T. (2003) A browser-based functional classification SuperViewer for Arabidopsis genomics. Currents in Computational Molecular Biology 2003, 271272.
  • Raven J.A. (1991) Long-term functioning of enucleate sieve elements: possible mechanisms of damage avoidance and damage repair. Plant, Cell & Environment 14, 139146.
  • Read S.M. & Northcote D.H. (1983a) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). European Journal of Biochemistry 134, 561569.
  • Read S.M. & Northcote D.H. (1983b) Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae. Planta 158, 119127.
  • Rentsch D., Schmidt S. & Tegeder M. (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Letters 581, 22812289.
  • Richardson P.T., Baker D.A. & Ho L.C. (1982) The chemical composition of cucurbit vascular exudates. Journal of Experimental Botany 33, 12391247.
  • Roustaee A., Dechamp-Guillaume G., Gelie B., Savy C., Dargent R. & Barrault G. (2000) Ultrastructural studies of the mode of penetration by Phoma macdonaldii in sunflower seedlings. Phytopathology 90, 915920.
  • Sabnis D. & Sabnis H. (1995) Phloem proteins: structure, biochemistry and function. In The Cambial Derivatives. Encyclopedia of Plant Anatomy (ed. M. Iqbal), pp. 271292. Borntraeger, Berlin, Germany.
  • Schobert C., Baker L., Szederkényi J., Großmann P., Komor E., Hayashi H., Chino M. & Lucas W.J. (1998) Identification of immunologically related proteins in sieve-tube exudate collected from monocotyledonous and dicotyledonous plants. Planta 206, 245252.
  • Sjölund R.D. (1997) The phloem sieve slement: a river runs through it. The Plant Cell 9, 11371146.
  • Smith L.M., Sabnis D.D. & Johnson R.P.C. (1987) Immunocytochemical localisation of phloem lectin from Cucurbita maxima using peroxidase and colloidal-gold labels. Planta 170, 461470.
  • Streitner C., Danisman S., Wehrle F., Schöning J.C., Alfano J.R. & Staiger D. (2008) The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal 56, 239250.
  • Tercé-Laforgue T., Dubois F., Ferrario-Méry S., Pou de Crecenzo M.-A., Sangwan R. & Hirel B. (2004) Glutamate dehydrogenase of tobacco is mainly induced in the cytosol of phloem companion cells when ammonia is provided either externally or released during photorespiration. Plant Physiology 136, 43084317.
  • Turgeon R. & Wolf S. (2009) Phloem transport: cellular pathways and molecular trafficking. Annual Review of Plant Biology 60, 207221.
  • Wächter R., Langhans M., Aloni R., et al. (2003) Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens. Plant Physiology 133, 10241037.
  • Walz C., Juenger M., Schad M. & Kehr J. (2002) Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. The Plant Journal 31, 189197.
  • Walz C., Giavalisco P., Schad M., Juenger M., Klose J. & Kehr J. (2004) Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65, 17951804.
  • Wang Q., Monroe J. & Sjölund R.D. (1995) Identification and characterization of a phloem-specific [beta]-amylase. Plant Physiology 109, 743750.
  • Zhang B., Tolstikov V., Turnbull C., Hicks L.M. & Fiehn O. (2010a) Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proceedings of the National Academy of Sciences of the United States of America 107, 1353213537.
  • Zhang L., Tan Q., Lee R., Trethewy A., Lee Y.-H. & Tegeder M. (2010b) Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. The Plant Cell 22, 36033620.
  • Zhao C., Craig J.C., Petzold H.E., Dickerman A.W. & Beers E.P. (2005) The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiology 138, 803818.
  • Zhu X., Shaw P.N., Pritchard J., Newbury J., Hunt E.J. & Barrett D.A. (2005) Amino acid analysis by micellar electrokinetic chromatography with laser-induced fluorescence detection: application to nanolitre-volume biological samples from Arabidopsis thaliana and Myzus persicae. Electrophoresis 26, 911919.