SEARCH

SEARCH BY CITATION

REFERENCES

  • Alpert A.J. (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of Chromatography 499, 177196.
  • Bahieldin A., Mahfouz H.T., Eissa H.F., Saleh O.M., Ramadan A.M., Ahmed I.A., Dyer W.E., El-Itriby H.A. & Madkour M.A. (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiologia Plantarum 123, 421427.
  • Bateman A., Birney E., Cerutti L., Durbin R., Etwiller L., Griffiths-Jones S., Howe K.L., Marshall M. & Sonnhammer E.L. (2002) The Pfam protein families database. Nucleic Acids Research 30, 276280.
  • Battaglia M., Olvera-Carrillo Y., Garciarrubio A., Campos F. & Covarrubias A.A. (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiology 148, 624.
  • Benedito V., Torez-Jerez I., Murray J., et al. (2008) A gene expression atlas of the model legume Medicago truncatula. The Plant Journal 55, 504513.
  • Bies-Ethève N., Gaubier-Comella P., Debures A., Lasserre E., Jobet E., Raynal M., Cooke R. & Delseny M. (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Molecular Biology 67, 107124.
  • Bolingue W., Ly Vu B., Leprince O. & Buitink J. (2010) Characterization of dormancy behaviour in seeds of the model legume Medicago truncatula. Seed Science Research 20, 97107.
  • Boucher V., Buitink J., Lin X., Boudet J., Hoekstra F.A., Hundertmark M., Renard D. & Leprince O. (2010) MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins. Plant, Cell & Environment 33, 418430.
  • Boudet J., Buitink J., Hoekstra F.A., Rogniaux H., Larre C., Satour P. & Leprince O. (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiology 140, 14181436.
  • Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.
  • Buitink J. & Leprince O. (2004) Glass formation in plant anhydrobiotes: survival in the dry State. Cryobiology 48, 215228.
  • Buitink J. & Leprince O. (2008) Intracellular glasses and seed survival in the dry state. Comptes Rendus Biologies 331, 788795.
  • Buitink J., Leger J.L., Guisle I., et al. (2006) Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation sensitive to –tolerant stages in Medicago truncatula seeds. The Plant Journal 47, 735750.
  • Chakrabortee S., Boschetti C., Walton L.J., Sarkar S., Rubinsztein D.C. & Tunnacliffe A. (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proceedings of the National Academy of Sciences of the United States of America 104, 1807318078.
  • Dure L. III, Crouch M., Harada J., Ho T.-H.D., Mundy J., Quatrano R., Thomas T. & Sung Z.R. (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molecular Biology 12, 475486.
  • Figueras M., Pujal J., Saleh A., Save R., Pages M. & Goday A. (2004) Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Annals of Applied Biology 144, 251257.
  • Galau G.A., Bijaisoradat N. & Hughes D.W. (1987) Accumulation kinetics of cotton late embryogenesis-abundant mRNAs and storage protein mRNAs: coordinate regulation during embryogenesis and the role of abscisic acid. Developmental Biology 123, 198212.
  • Gallardo K., Le Signor C., Vandekerckhove J., Thompson R.D. & Burstin J. (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiology 133, 664682.
  • Gilles G.J., Hines K.M., Manfre A.J. & Marcotte W.R. (2007) A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from drying. Plant Physiology and Biochemistry 45, 389399.
  • Hoekstra F.A., Golovina E.A. & Buitink J. (2001) Mechanisms of plant desiccation tolerance. Trends in Plant Science 6, 431438.
  • Hughes D.W. & Galau G.A. (1991) Developmental and environmental induction of LEA and LEA messenger-RNAs and the postabscission program during embryo culture. The Plant Cell 3, 605618.
  • Hundertmark M. & Hincha D.K. (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9, 118.
  • Hundertmark M., Buitink J., Leprince O. & Hincha D.K. (2011) Reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Science Research 21, 165173.
  • Ismail A., Hall A.E. & Close T.J. (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proceedings of the National Academy of Sciences of the United States of America 96, 1356613570.
  • Kim J.S., Park S.J., Kwak K.J., Kim Y.O., Kim J.Y., Song J., Jang B., Jung C.H. & Kang H. (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Research 35, 506516.
  • King J.Y., Ferrara R., Tabibiazar R., et al. (2005) Pathway analysis of coronary atherosclerosis. Physiological Genomics 23, 103118.
  • Li D.-Z. & Pritchard H.W. (2009) The science and economics of ex situ plant conservation. Trends in Plant Science 14, 614621.
  • Manfre A.J., LaHatte G.A., Climer C.R. & Marcotte W.R. (2009) Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1. Plant Cell and Physiology 50, 243253.
  • Oliveira E., Amara I., Bellido D., Odena M.A., Dominguez E., Pages M. & Goday A. (2007) LC-MSMS identification of Arabidopsis thaliana heat-stable seed proteins: enriching for LEA-type proteins by acid treatment. Journal of Mass Spectroscopy 42, 14851495.
  • Olvera-Carrillo Y., Campos F., Reyes J.L., Garciarrubio A. & Covarrubias A.A. (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiology 154, 373390.
  • Prieto-Dapena P., Castano R., Almoguera C. & Jordano J. (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiology 142, 11021112.
  • Probert R., Adams J., Coneybeer J., Crawford A. & Hay F. (2007) Seed quality for conservation is critically affected by pre-storage factors. Australian Journal of Botany 55, 326335.
  • Rosnoblet C., Aubry C., Leprince O., Ly Vu B., Rogniaux H. & Buitink J. (2007) The regulatory gamma subunit SNF4b of the sucrose nonfermenting related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds. The Plant Journal 51, 4759.
  • Roychoudhury A., Roy C. & Sengupta D.N. (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Reports 26, 18391859.
  • Sallon S., Solowey E., Cohen Y., Korchinsky R., Egli M., Woodhatch I., Simchoni O. & Kislev M. (2008) Germination, genetics, and growth of an ancient date seed. Science 320, 1464.
  • Sanhewe A.J. & Ellis R.H. (1996) Seed development and maturation in Phaseolus vulgaris .2. Post- harvest longevity in air-dry storage. Journal of Experimental Botany 47, 959965.
  • Santos-Mendoza M., Dubreucq B., Baud S., Parcy F., Caboche M. & Lepiniec L. (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. The Plant Journal 54, 608620.
  • Shih M.-D., Hsieh T.-Y., Lin T., Hsing Y.-I. & Hoekstra F.A. (2010) Characterization of two soybean (Glycine max L.) LEA IV proteins by circular dichroism and Fourier transform infrared spectrometry. Plant Cell and Physiology 51, 395407.
  • Shimizu T., Kanamori Y., Furuki T., Kikawada T., Okuda T., Takahashi T., Mihara H. & Sakurai M. (2010) Desiccation-induced structuralization and glass formation of the group 3 late embryogenesis abundant protein model peptides. Biochemistry 49, 10931104.
  • Singh S., Cornilescu C.C., Tyler R.C., Cornilescu G., Tonelli M., Lee M.S. & Markley J.L. (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Science 14, 26012609.
  • Soulages J.L., Kim K., Walters C. & Cushman J.C. (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiology 128, 822832.
  • Tejedor-Cano J., Prieto-Dapena P., Almoguera C.N., Carranco R.L., Hiratsu K., Ohme-Takagi M. & Jordano J. (2010) Loss of function of the HSFA9 seed longevity program. Plant, Cell & Environment 33, 14081417.
  • Tolleter D., Jaquinod M., Mangavel C., Passirani C., Saulnier P., Manon S., Teyssier E., Payet N., Avelange-Macherel M.H. & Macherel D. (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. The Plant Cell 19, 15801589.
  • Tunnacliffe A. & Wise M.J. (2007) The continuing conundrum of the LEA proteins. Die Naturwissenschaften 94, 791812.
  • Wehmeyer N. & Vierling E. (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiology 122, 10991108.
  • Wolkers W.F., McReady S., Brandt W.F., Lindsey G.G. & Hoekstra F.A. (2001) Isolation and characterization of a D7-LEA protein from pollen that stabilizes glasses in vitro. Biochimica and Biophysica Acta 1544, 196206.
  • Xiao B.Z., Huang Y.M., Tang N. & Xiong L.Z. (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics 115, 3546.