SEARCH

SEARCH BY CITATION

REFERENCES

  • Almagro S., Lin S.H. & Tsay Y.F. (2008) Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. The Plant Cell 20, 32893299.
  • Barbulova A., D'Apuzzo E., Rogato A. & Chiurazzi M. (2005) Improved procedures for in vitro regeneration and for phenotypical analysis in the model legume Lotus japonicus. Functional Plant Biology 32, 529536.
  • Barbulova A., Rogato A., D'Apuzzo E., Omrane S. & Chiurazzi M. (2007) Differential effects of combined N sources on early steps of the Nod factor-dependent transduction pathway in Lotus japonicus. Molecular Plant-Microbe Interactions 20, 9941003.
  • Bisseling T., van den Bos R.C. & van Kammen A. (1978) The effect of ammonium nitrate on the synthesis of nitrogenase and the concentration of leghemoglobin in pea root nodules induced by Rhizobium leguminosarum. Biochimica et Biophysica Acta 539, 111.
  • Brenner W.G., Romanov G.A., Kollmer I., Burkle L. & Schmulling T. (2005) Immediate and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. The Plant Journal 44, 314333.
  • Cai C., Wang J.Y., Zhu Y.G., Shen Q.R., Li B., Tong Y.P. & Li Z.S. (2008) Gene structure and expression of the high-affinity nitrate transport system in rice roots. Journal of Integrative Plant Biology 50, 443451.
  • Carroll B.J. & Mathews A. (1990) Nitrate inhibition of nodulation in legumes. In Molecular Biology of Symbiotic Nitrogen Fixation (ed. P.M. Gresshoff), pp. 159180. CRC Press, Boca Raton, FL, USA.
  • Cerezo M., Tillard P., Filleur S., Muños S., Daniel-Vedele F. & Gojon A. (2001) Major alterations of the regulation of root NO(3)(-) uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiology 127, 262271.
  • Claros M.G. & von Heijne G. (1994) TopPred II: an improved software for membrane protein structure predictions. CABIOS 10, 685686.
  • Crawford N.M. & Glass A.D.M. (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science 10, 389395.
  • Criado M.V., Caputo C., Roberts I.N., Castro M.A. & Barneix A.J. (2009) Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). Journal of Plant Physiology 166, 17751885.
  • D'Apuzzo E., Rogato A., Simon-Rosin U., et al. (2004) Characterisation of three functional high affinity ammonium transporters in Lotus japonicus with differential transcriptional regulation and spatial expression. Plant Physiology 134, 17631774.
  • Ding Y. & Oldroyd G.E.D. (2009) Positioning the nodule, the hormone dictum. Plant Signaling and Behavior 4, 8993.
  • Fan S.C., Lin C.S., Hsu P.K., Lin S.H. & Tsay Y.F. (2009) The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. The Plant Cell 21, 27502761.
  • Feng H., Yan M., Fan X., Li B., Shen Q., Miller A.J. & Xu G. (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany 62, 23192332.
  • Ferraioli S., Tatè R., Rogato A., Chiurazzi M. & Patriarca J.E. (2004) Development of ectopic roots from abortive nodule primordia. Molecular Plant-Microbe Interactions 17, 10431050.
  • Fey H. & Vessey J.K. (2009) Stimulation of nodulation in Medicago truncatula by low concentrations of ammonium: quantitative reverse transcription PCR analysis of selected genes. Physiologia Plantarum 135, 317330.
  • Filleur S. & Daniel-Vedele F. (1999) Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta 207, 461469.
  • Filleur S., Dorbe M.F., Cerezo M., Orsel M., Granier F., Gojon A. & Daniel-Vedele F. (2001) An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Letters 489, 220224.
  • Forde B.G. (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annual Review of Plant Biology 53, 203224.
  • Fujikake H., Yamazaki A., Ohtake N., et al. (2003) Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. Journal of Experimental Botany 54, 13791388.
  • Fukaki H. & Tasaka M. (2009) Hormone interactions during lateral root formation. Plant Molecular Biology 69, 437439.
  • Gamborg O.L., Miller R.A. & Ojima K. (1968) Nutrient requirement of suspensions cultures of soybean root cells. Experimental Cell Research 50, 151158.
  • Graham P.H. & Vance C.P. (2003) Legumes: importance and constraints to greater use. Plant Physiology 131, 872877.
  • Guo F.K., Wang R. & Crawford N.M. (2002) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. Journal of Experimental Botany 53, 835844.
  • Harris J.M. & Dickstein R. (2010) Control of root architecture and nodulation by the LATD/NIP transporter. Plant Signaling and Behavior 5, 13861390.
  • Ho C.H., Lin S.H., Hu H.C. & Tsay Y.F. (2009) CHL1 functions as a nitrate sensor in plants. Cell 138, 11841194.
  • Hofmann K. & Stoffel W. (1993) Tmbase, a database of membrane spanning proteins segments. Biological Chemistry 374, 166.
  • Jefferson R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter 5, 387405.
  • Jeong J., Suh S., Guan C., Tsay Y.F., Moran N., Oh C.J., An C.S., Demchenko K.N., Pawlowski K. & Lee Y. (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiology 134, 969978.
  • Kiba T., Kudo T., Kojima M. & Sakakibara H. (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany 62, 13991409.
  • Kiba T.K., Feria-Bourrellier A.B., Lafouge F., et al. (2012) The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. The Plant Cell 24, 245258.
  • Kinkema M., Scott P.T. & Gresshoff P.M. (2006) Legume nodulation: successful symbiosis through short- and long-distance signalling. Functional Plant Biology 33, 707721.
  • Kistner C. & Matamoros M. (2005) RNA isolation using phase extraction and LiCl precipitation, in Lotus japonicus. In Handbook (ed. A.J. Marquez), pp. 123124. Springer Verlag, Dordrecht, the Netherlands.
  • Krouk G., Tillard P. & Gojon A. (2006) Regulation of the high-affinity NO3- uptake system by NRT1.1-mediated NO3- demand signaling in Arabidopsis. Plant Physiology 142, 10751086.
  • Krouk G., Lacombe B., Bielach A., et al. (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell 18, 927397.
  • Li J.Y., Fu Y.L., Pike S.M., et al. (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. The Plant Cell 22, 16331646.
  • Li W., Wang Y., Okamoto M., Crawford N., Siddiqi M. & Glass A. (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiology 143, 425433.
  • Lin C.M., Koh S., Stacey G., Yu S.M., Lin T.Y. & Tsay Y.F. (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene OsNRT1 from rice. Plant Physiology 122, 379388.
  • Lin S., Kuo H., Canivenc G., et al. (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. The Plant Cell 20, 25142528.
  • Little D.Y., Rao H., Oliva S., Daniel-Vedele F., Krapp A. & Malamy J.E. (2005) The putative high-affinity nitrate transporter NTR2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences of the United States of America 102, 1369313698.
  • Liu K.H., Huang C.Y. & Tsay Y.F. (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. The Plant Cell 11, 865874.
  • Lombari P., Ercolano E., El Alaoui H. & Chiurazzi M. (2003) A new transformation-regeneration procedure in the model legume Lotus japonicus. Root explants as a source of large numbers of cells susceptible to Agrobacterium mediated transformation. Plant Cell Reports 21, 771777.
  • Ludwig E.M., Hosie A.H.F., Bordes A., Finlay K., Allaway D., Karunakaran R., Downie J.A. & Poole P.S. (2003) Amino-acid cycling drives mitrogen fixation in the legume-rhizobium symbiosi. Nature 422, 722726.
  • Malamy J.E. (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell & Environment 28, 6777.
  • Martirani L., Stiller J., Mirabella R., Alfano F., Lamberti A., Radutoiu S.E., Iaccarino M., Gressohff P.M. & Chiurazzi M. (1999) Establishment of a T-DNA tagging program in the model legume Lotus japonicus. Expression patterns, activation frequencies and potential for insertional mutagenesis. Molecular Plant-Microbe Interactions 12, 275284.
  • Mathesius U., Schlaman H.R.M., Spaink H.P., Sautter C., Rolfe B.G. & Djordjevic M.A. (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. The Plant Journal 14, 2334.
  • Miller A.J., Fan X., Orsel M., Smith S.J. & Wells D.M. (2007) Nitrate transport and signalling. Journal of Experimental Botany 58, 22972306.
  • Morère-Le Paven M.C., Viau L., Hamon A., et al. (2011) Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. Journal of Experimental Botany 62, 55955605.
  • Mortier V., Den Herder G., Whitford R., Van de Velde W., Rombauts S., D'haeseleer K., Holsters M. & Goormachtig S. (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiology 153, 222237.
  • Mortier V., De Wever E., Vuylsteke M., Holsters M. & Goormachtig S. (2012) Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. The Plant Journal 70, 367376.
  • Mortier V., Holsters M. & Goormachtig S. (2012) Never too many? How legumes control nodule numbers. Plant, Cell & Environment 35, 245258.
  • Murray D.J., Karas B.J., Sato S., Tabata S., Amyot L. & Sczyglowski K. (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315, 101104.
  • Okamoto M., Vidmar J.J. & Glass A.D. (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant & Cell Physiology 44, 304317.
  • Okamoto S., Ohnishi E., Sato S., Takahashi H., Nakazono M., Tabata S. & Kawaguchi M. (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant & Cell Physiology 50, 6777.
  • Oldroyd G.E.D. & Downie J.A. (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annual Review of Plant Molecular Biology 59, 519546.
  • Omrane S. & Chiurazzi M. (2009) A variety of regulatory mechanisms are involved in the nitrogen-dependent modulation of the nodule organogenesis program in legume roots. Plant Signaling and Behavior 4, 10661068.
  • Omrane S., Ferrarini A., D'Apuzzo E., Rogato A., Delledonne M. & Chiurazzi M. (2009) Symbiotic competence in Lotus japonicus is affected by plant nitrogen status: transcriptomic identification of genes affected by a new signalling pathway. New Phytologist 183, 380394.
  • Orsel M., Krapp A. & Daniel-Vedele F. (2002) Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiology 129, 886896.
  • Orsel M., Chopin F., Leleu O., Smith S.J., Krapp A., Daniel-Vedele F. & Miller A.J. (2006) Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiology 142, 13041317.
  • Reid D.E., Ferguson B.J. & Gresshoff P.M. (2011) Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Molecular Plant-Microbe Interactions 24, 606618.
  • Remans T., Nacry P., Pervent M., Girin T., Tillard P., Lepetit M. & Gojon A. (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology 140, 909921.
  • Rogato A., D'Apuzzo E., Barbulova A., Omrane S., Stedel K., Simon-Rosin U., Katinakis P., Flemetakis M. & Chiurazzi M. (2008) Tissue-specific down-regulation of LjAMT1;1 compromises nodule function and enhances nodulation in Lotus japonicus. Plant Molecular Biology 68, 585595.
  • Saitou N. & Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.
  • Tamura K., Dudley J., Nei M. & Kumar S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.
  • Tian Q., Uhlir N.J. & Reed J.W. (2002) Arabidopsis SHY/IAA3 inhibits auxin-regulated gene expression. The Plant Cell 14, 301319.
  • Tirichine L., Sandal N., Madsen L.H., Radutoiu S., Albrektsen A.S., Sato S., Asamizu E., Tabata S. & Stougaard J. (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315, 104107.
  • Tsay Y.F., Schroeder J.I., Feldmann K.A. & Crawford N.M. (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705713.
  • Tsay Y.F., Chiu C.C., Tsai C.B., Ho C.H. & Hsu P.K. (2007) Nitrate transporters and peptide transporters. FEBS Letters 581, 22903000.
  • Tusnàdy G.E. & Simon I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849850.
  • Veereshlingam H., Haynes J.G., Penmetsa R.V., Cook D.R., Sherrier D.J. & Dickstein R. (2004) Nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiology 136, 36923702.
  • Wang R., Liu D. & Crawford N.M. (1998) The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proceedings of the National Academy of Sciences of the United States of America 95, 1513415139.
  • Wang R., Guegler K., LaBrie S.T. & Crawford N.M. (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. The Plant Cell 12, 14911508.
  • Wang R., Okamoto M., Xing X. & Crawford N.M. (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiology 132, 556567.
  • Wang Y.Y. & Tsay Y.F. (2011) Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. The Plant Cell 23, 19451957.
  • Wienkoop S. & Saalbach G. (2003) Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiology 131, 10801090.
  • Yendrek C., Lee Y.C., Morris V., et al. (2010) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. The Plant Journal 62, 100112.
  • Zhang H. & Forde B.G. (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407409.
  • Zhang H. & Forde B.G. (2000) Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany 51, 5159.
  • Zhou J.J., Theodoulou F.L., Muldin I., Ingemarsson B. & Miller A.J. (1998) Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. Journal of Biohemical Chemistry 273, 1201712023.
  • Zuckerkandl E. & Pauling L. (1965) Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins (eds V. Bryson & H.J. Vogel), pp. 97166. Academic Press, New York, USA.