SEARCH

SEARCH BY CITATION

REFERENCES

  • Armstrong J. & Armstrong W. (1988) Phragmites australis – a preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytologist 108, 373382.
  • Armstrong J. & Armstrong W. (1990) A convective through-flow of gases in Phragmites australis (cav.) trin. Ex steud. Aquatic Botany 39, 7588.
  • Armstrong J., Armstrong W. & Beckett P.M. (1992) Phragmites australis: venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytologist 120, 197207.
  • Armstrong J., Armstrong W., Armstrong I.B. & Pittaway G.R. (1996b) Senescence, and phytotoxin, insect, fungal and mechanical damage: factors reducing convective gas-flows in Phragmites australis. Aquatic Botany 54, 211226.
  • Armstrong W. (1979) Aeration in higher plants. Advances in Botanical Research 7, 225332.
  • Armstrong W. & Drew M.C. (2002) Root growth and metabolism under oxygen deficiency. In Plant Roots: The Hidden Half (eds Y. Waisel, A. Eshel & U. Kafkafi), pp. 729761. Marcel Dekker, Inc, New York, NY, USA.
  • Armstrong W., Armstrong J., Beckett P.M. & Justin S.H.F. (1991) Convective gas-flows in wetland plant aeration. In Plant Life under Oxygen Deprivation (eds M.B. Jackson, D.D. Davies & H. Lambers), pp. 283302. Academic Publishing, The Hague, the Netherlands.
  • Armstrong W., Armstrong J. & Beckett P.M. (1996a) Pressurised aeration in wetland macrophytes: some theoretical aspects of humidity-induced convection and thermal transpiration. Folia Geobotanica 31, 2536.
  • Bailey-Serres J. & Voesenek L.A.C. (2008) Flooding stress: acclimations and genetic diversity. Annual Review of Plant Biology 59, 313339.
  • Beckett P.M., Armstrong W., Justin S.H.F. & Armstrong J. (1988) On the relative importance of convective and diffusive gas flows in plant aeration. New Phytologist 110, 463468.
  • Borum J., Pedersen O., Greve T.M., Frankovich T.A., Zieman J.C., Fourqurean J.W. & Madden C.J. (2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93, 148158.
  • Borum J., Sand-Jensen K., Binzer T., Pedersen O. & Greve T.M. (2006) Oxygen movement in seagrasses. In Seagrasses: Biology, Ecology and Conservation (eds A.W.D. Larkum, R.J. Orth & C.M. Duarte), pp. 255270. Springer, Dordrecht, the Netherlands.
  • Bouranis D.L., Chorianopoulou S.N., Kollias C., Maniou P., Protonotarios V.E., Siyiannis V.F. & Hawkesford M.J. (2006) Dynamics of aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize. Annals of Botany 97, 695704.
  • Catling D. (1992) Rice in Deep Water. The Macmillan Press Ltd, Hong Kong, China.
  • Colmer T.D. & Pedersen O. (2008) Oxygen dynamics in submerged rice (Oryza sativa). New Phytologist 178, 326334.
  • Colmer T.D. & Voesenek L.A.C. (2009) Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology 36, 665681.
  • Colmer T.D., Winkel A. & Pedersen O. (2011) A perspective on underwater photosynthesis in submerged terrestrial wetland plants. AoB PLANTS 2011. doi:10.1093/aobpla/plr030.
  • Greve T.M., Borum J. & Pedersen O. (2003) Meristematic oxygen variability in eelgrass (Zostera marina). Limnology and Oceanography 48, 210216.
  • Große W. (1996) Pressurised ventilation in floating-leaved aquatic macrophytes. Aquatic Botany 54, 137150.
  • Grosse W., Armstrong J. & Armstrong W. (1996) A history of pressurised gas-flow studies in plants. Aquatic Botany 54, 87100.
  • Higaskmura T. (1969) Morphogenesis of nodal diaphragm in Oryza sativa, l. Bulletin Nara University of Education 18, 5965.
  • Holmer M., Pedersen O., Krause-Jensen D., Olesen B., Petersen M.H., Schopmeyer S., Koch M., Lomstein B.A. & Jensen H.S. (2009) Sulfide intrusion in the tropical seagrasses Thalassia testudinum and Syringodium filiforme. Estuarine, Coastal and Shelf Science 85, 319326.
  • Jackson M.B. & Armstrong W. (1999) Formation of aerenchyma and processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1, 274287.
  • Jung J., Lee S.C. & Choi H.K. (2008) Anatomical patterns of aerenchyma in aquatic and wetland plants. Journal of Plant Biology 51, 428439.
  • Kemp W.M. & Murray L. (1986) Oxygen release from roots of the submersed macrophyte Potamogeton perfoliatus L.: regulating factors and ecological implications. Aquatic Botany 26, 271283.
  • Mackereth F.J.H., Heron J. & Tailing J.F. (1978) Water Analysis: Some Revised Methods for Limnologists. Titus Wilson and Sons Ltd, London, UK.
  • Marchant N.G., Wheeler J.R., Rye B.L., Bennett E.M., Lander N.S. & Macfarlane T.D. (1987) Flora of the Perth Region. Department of Agriculture., Perth, Western Australian Herbarium, Western Australia.
  • Mommer L. & Visser E.J.W. (2005) Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Annals of Botany 96, 581589.
  • Mommer L., Pons T.L., Wolters-Arts M., Venema J.H. & Visser E.J.W. (2005) Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiology 139, 497508.
  • Moody M.L. & Les D.H. (2007) Phylogenetic systematics and character evolution in the angiosperm family Haloragaceae. American Journal of Botany 94, 20052025.
  • NIH (2005) Imagej 1.32j USA, National Institutes of Health.
  • Pedersen O., Vos H. & Colmer T.D. (2006) Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata. Plant, Cell & Environment 29, 13881399.
  • Pedersen O., Rich S.M. & Colmer T.D. (2009) Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. The Plant Journal 58, 147156.
  • Pedersen O., Malik A.I. & Colmer T.D. (2010) Submergence tolerance in Hordeum marinum: dissolved CO2 determines underwater photosynthesis and growth. Functional Plant Biology 37, 524531.
  • Pierik R., van Aken J.M. & Voesenek L.A.C. (2009) Is elongation-induced leaf emergence beneficial for submerged Rumex species? Annals of Botany 103, 353357.
  • Rich S.M., Ludwig M., Pedersen O. & Colmer T.D. (2011) Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize: implications for root function during flooding. New Phytologist 109, 113119.
  • Rich S.M., Ludwig M. & Colmer T.D. (2012) Aquatic adventitious root development in partially- and completely-submerged wetland plants Cotula coronopifolia and Meionectes brownii. Annals of Botany 110, 405414.
  • Romanowski N. (1998) Aquatic and Wetland Plants: A Field Guide for Non-Tropical Australia. University of New South Wales Press Ltd, Sydney, NSW, Australia.
  • Sand-Jensen K., Pedersen O., Binzer T. & Borum J. (2005) Contrasting oxygen dynamics in the freshwater isoetid Lobelia dortmanna and the marine seagrass Zostera marina. Annals of Botany 96, 613623.
  • Schuette J.L., Klug M.J. & Klomparens K.L. (1994) Influence of stem lacunar structure on gas transport: relation to the oxygen transport potential of submersed vascular plants. Plant, Cell & Environment 17, 355365.
  • Sculthorpe C.D. (1967) The Biology of Aquatic Vascular Plants. Edward Arnold Ltd, London, UK.
  • Seago J.L. Jr & Leland C.M. (1989) Adventitious root development in Typha glauca, with emphasis on the cortex. American Journal of Botany 76, 909923.
  • Setter T.L., Kupkanchanakul T., Kupkanchanakul K., Bhekasut P., Wiengweera A. & Greenway H. (1987) Concentrations of CO2 and O2 in floodwater and in internodal lacunae of floating rice growing at 1–2 metre water depths. Plant, Cell & Environment 10, 767776.
  • Smith F.A. & Walker N.A. (1980) Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3- and to carbon isotopic discrimination. New Phytologist 86, 245259.
  • Sorrell B.K. & Dromgoole F.I. (1987) Oxygen transport in the submerged freshwater macrophyte Egeria densa Planch. I. Oxygen production, storage and release. Aquatic Botany 28, 6380.
  • Sorrell B.K., Brix H. & Orr P.T. (1997) Eleocharis sphacelata: internal gas transport pathways and modelling of aeration by pressurized flow and diffusion. New Phytologist 136, 433442.
  • Steffens B., Geske T. & Sauter M. (2011) Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytologist 109, 369378.
  • Stumm W. & Morgan J.J. (1996) Aquatic Chemistry, 3rd edn. John Wiley and Sons, New York, NY, USA.
  • Stünzi J.T. & Kende H. (1989) Gas composition in the internal air spaces of deepwater rice in relation to growth induced by submergence. Plant and Cell Physiology 30, 4956.
  • Van der Sman A.J.M., Blom C.W.P. & Barendse G.W.M. (1993) Flooding resistance and shoot elongation in relation to developmental stage and environmental conditions in Rumex maritimus L. and Rumex palustris Sm. New Phytologist 125, 7384.
  • Wellburn A.R. (1994) The spectral determination of Chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144, 307313.