SEARCH

SEARCH BY CITATION

REFERENCES

  • Alonso-Blanco C., Peeters A.J.M., Koornneef M., Lister C., Dean C., Van Den Bosch N., Pot J. & Kuiper M.T.R. (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. The Plant Journal 14, 259271.
  • Arteca R.N. & Arteca J.M. (2000) A novel method for growing Arabidopsis thaliana plants hydroponically. Physiologia Plantarum 108, 188193.
  • Barrière Y., Laperche A., Barrot L., Aurel G., Briand M. & Jouanin L. (2005) QTL analysis of lignification and cell wall digestibility in the Bay-0 × Shahdara RIL progeny of Arabidopsis thaliana as a model system for forage plant. Plant Science 168, 12351245.
  • Batistič O. & Kudla J. (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219, 915924.
  • Batistič O., Waadt R., Steinhorst L., Held K. & Kudla J. (2010) CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. The Plant Journal 61, 211222.
  • Baxter I., Muthukumar B., Park H.C., et al. (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genetics 4, e1000004.
  • Baxter I., Brazelton J.N., Ya D., et al. (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genetics 6, e1001193.
  • Berthomieu P., Conéjéro G., Nublat A., et al. (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO Journal 22, 20042014.
  • Bhandal I.S., Malik C.P., Bourne G.H., Jeon K.W. & Friedlander M. (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. International Review of Cytology 110, 205254.
  • Blaha G., Stelzl U., Spahn C.M.T., Agrawal R.K., Frank J. & Nierhaus K.H. (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods in Enzymology 317, 292309.
  • Bretó M.P., Aśins M.J. & Carbonell E.A. (1994) Salt tolerance in Lycopersicon species. III. Detection of quantitative trait loci by means of molecular markers. Theoretical and Applied Genetics 88, 395401.
  • Buescher E., Achberger T., Amusan I., et al. (2010) Natural genetic variation in selected populations of Arabidopsis thaliana is associated with ionomic differences. PLoS ONE 5, e11081.
  • Byrt C.S., Platten J.D., Spielmeyer W., James R.A., Lagudah E.S., Dennis E.S., Tester M. & Munns R. (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiology 143, 19181928.
  • Cheong Y.H., Kim K.N., Pandey G.K., Gupta R., Grant J.J. & Luan S. (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell 15, 18331845.
  • Cheong Y., Sung S., Kim B.-G., Pandey G., Cho J.-S., Kim K.-N. & Luan S. (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Molecules and Cells 29, 159165.
  • Chomczynski P. (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques 15, 532537.
  • Clark R.M., Schweikert G., Toomajian C., et al. (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338342.
  • Clough S.J. & Bent A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735743.
  • Curtis M.D. & Grossniklaus U. (2003) A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology 133, 462469.
  • D'Angelo C., Weinl S., Batistic O., et al. (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. The Plant Journal 48, 857872.
  • Davenport R.J., Munoz-Mayor A., Jha D., Essah P.A., Rus A.N.A. & Tester M. (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell & Environment 30, 497507.
  • Edwards K., Johnstone C. & Thompson C. (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research. 19, 1349.
  • Estañ M., Villalta I., Bolarín M., Carbonell E. & Asins M. (2009) Identification of fruit yield loci controlling the salt tolerance conferred by Solanum rootstocks. Theoretical and Applied Genetics 118, 305312.
  • Forster B. (2001) Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120, 317328.
  • Gao P., Zhao P.M., Wang J., Wang H.Y., Wu X.M. & Xia G.X. (2007) Identification of genes preferentially expressed in cotton fibers: a possible role of calcium signaling in cotton fiber elongation. Plant Science 173, 6169.
  • Garthwaite A.J., von Bothmer R. & Colmer T.D. (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. Journal of Experimental Botany 56, 23652378.
  • Genc Y., McDonald G.K. & Tester M. (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant, Cell & Environment 30, 14861498.
  • Genc Y., Oldach K., Verbyla A., Lott G., Hassan M., Tester M., Wallwork H. & McDonald G. (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theoretical and Applied Genetics 121, 877894.
  • Gorham J. (1990) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. Journal of Experimental Botany 41, 623627.
  • Gorham J., Hardy C., Wyn Jones R.G., Joppa L.R. & Law C.N. (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theoretical and Applied Genetics 74, 584588.
  • Grace M.L., Chandrasekharan M.B., Hall T.C. & Crowe A.J. (2004) Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter. Journal of Biological Chemistry. 279, 81028110.
  • Grefen C. & Blatt M.R. (2012) Do calcineurin B-like proteins interact independently of the serine threonine kinase CIPK23 with the K+ channel AKT1? Lessons learned from a Ménage à Trois. Plant Physiology 159, 915919.
  • Grefen C., Chen Z., Honsbein A., Donald N., Hills A. & Blatt M.R. (2010) A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in Arabidopsis. The Plant Cell 22, 30763092.
  • Halfter U., Ishitani M. & Zhu J.-K. (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America 97, 37353740.
  • Harada H. & Leigh R.A. (2006) Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana. Journal of Experimental Botany 57, 953960.
  • Higo K., Ugawa Y., Iwamoto M. & Korenaga T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Research 27, 297300.
  • Horie T., Hauser F. & Schroeder J.I. (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science 14, 660668.
  • Horie T., Brodsky D.E., Costa A., Kaneko T., Lo Schiavo F., Katsuhara M. & Schroeder J.I. (2011) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiology 156, 14931507.
  • Jacobs A., Lunde C., Bacic A., Tester M. & Roessner U. (2007) The impact of constitutive heterologous expression of a moss Na+ transporter on the metabolomes of rice and barley. Metabolomics 3, 307317.
  • James R.A., Davenport R.J. & Munns R. (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiology 142, 15371547.
  • Jha D., Shirley N., Tester M. & Roy S.J. (2010) Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of tranporters involved in sodium transport. Plant, Cell & Environment 33, 793804.
  • Jung H.-S. & Niyogi K.K. (2009) Quantitative genetic analysis of thermal dissipation in Arabidopsis. Plant Physiology 150, 977986.
  • Kim B.G., Waadt R., Cheong Y.H., Pandey G.K., Dominguez-Solis J.R., Schultke S., Lee S.C., Kudla J. & Luan S. (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. The Plant Journal 52, 473484.
  • Kim K.-N., Cheong Y.H., Grant J.J., Pandey G.K. & Luan S. (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. The Plant Cell 15, 411423.
  • Kolukisaoglu U., Weinl S., Blazevic D., Batistic O. & Kudla J. (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology 134, 4358.
  • Konieczny A. & Ausubel F.M. (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal 4, 403410.
  • Koornneef M., Alonso-Blanco C. & Vreugdenhil D. (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology 55, 141172.
  • Koyama M.L., Levesley A., Koebner R.M.D., Flowers T.J. & Yeo A.R. (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiology 125, 406422.
  • Kudla J., Batistič O. & Hashimoto K. (2010) Calcium signals: the lead currency of plant information processing. The Plant Cell 22, 541563.
  • Lan W.-Z., Lee S.-C., Che Y.-F., Jiang Y.-Q. & Luan S. (2011) Mechanistic analysis of AKT1 regulation by the CBL–CIPK–PP2CA interactions. Molecular Plant 4, 527536.
  • Laserna M.P., Sánchez R.A. & Botto J.F. (2008) Light-related loci controlling seed germination in Ler × Cvi and Bay-0 × Sha recombinant inbred-line populations of Arabidopsis thaliana. Annals of Botany 102, 631642.
  • Lee S.C., Lan W.Z., Kim B.G., Li L.G., Cheong Y.H., Pandey G.K., Lu G.H., Buchanan B.B. & Luan S. (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences of the United States of America 104, 1595915964.
  • Li L.G., Kim B.G., Cheong Y.H., Pandey G.K. & Luan S. (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 1262512630.
  • Lindsay M.P., Lagudah E.S., Hare R.A. & Munns R. (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Functional Plant Biology 31, 11051114.
  • Lister C. & Dean C. (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. The Plant Journal 4, 745750.
  • Liu J., Ishitani M., Halfter U., Kim C.-S. & Zhu J.-K. (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America 97, 37303734.
  • Loudet O., Chaillou S., Camilleri C., Bouchez D. & Daniel-Vedele F. (2002) Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics 104, 11731184.
  • Loudet O., Chaillou S., Krapp A. & Daniel-Vedele F. (2003) Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana. Genetics 163, 711722.
  • Luan S. (2009) The CBL-CIPK network in plant calcium signaling. Trends in Plant Science 14, 3742.
  • Ma L., Zhou E., Huo N., Zhou R., Wang G. & Jia J. (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153, 109117.
  • Mahajan S., Sopory S.K. & Tuteja N. (2006) Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS Journal 273, 907925.
  • Mano Y. & Takeda K. (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94, 263272.
  • Mäser P., Hosoo Y., Goshima S., et al. (2002) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences of the United States of America 99, 64286433.
  • Mian A., Oomen R.J.F., Isayenkov S., Sentenac H., Maathuis F.J.M. & Véry A.-A. (2011) Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. The Plant Journal 68, 468479.
  • Molina C. & Grotewold E. (2005) Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6, 25.
  • Møller I. & Tester M. (2007) Salinity tolerance of Arabidopsis: a good model for cereals? Trends in Plant Science 12, 534540.
  • Møller I., Gilliham M., Jha D., Mayo G., Roy S.J., Coates J., Haseloff J. & Tester M. (2009) Salinity tolerance engineered by cell type-specific over-expression of a Na+ transporter in the Arabidopsis root. The Plant Cell 21, 21632178.
  • Mouille G., Witucka-Wall H., Bruyant M.-P, Loudet O., Pelletier S., Rihouey C., Lerouxel O., Lerouge P., Hofte H. & Pauly M. (2006) Quantitative trait loci analysis of primary cell wall composition in Arabidopsis. Plant Physiology 141, 10351044.
  • Munns R. & James R.A. (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil 253, 201218.
  • Munns R. & Tester M. (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651681.
  • Munns R., James R.A. & Lauchli A. (2006) Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57, 10251043.
  • Munns R., James R., Xu B., et al. (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology 30, 360364.
  • Navarro J.M., Garrido C., Martínez V. & Carvajal M. (2003) Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes. Plant Growth Regulation 41, 237245.
  • O'Neill C., Morgan C., Kirby J., et al. (2008) Six new recombinant inbred populations for the study of quantitative traits in Arabidopsis thaliana. Theoretical and Applied Genetics 116, 623634.
  • Olías R., Eljakaoui Z., Li J.U.N., De Morales P.A., Marín-Manzano M.C., Pardo J.M. & Belver A. (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell & Environment 32, 904916.
  • Piao H.-L., Xuan Y.-H., Park S., et al. (2010) OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Molecules and Cells 30, 1927.
  • Plett D.C. & Møller I.S. (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant, Cell & Environment 33, 612626.
  • Poustini K. & Siosemardeh A. (2004) Ion distribution in wheat cultivars in response to salinity stress. Field Crop Research 85, 125133.
  • Prinzenberg A.E., Barbier H., Stich B., Salt D.E. & Reymond M. (2010) Relationships between growth, growth response to nutrient supply and ion content using a recombinant inbred line population in Arabidopsis thaliana. Plant Physiology 154, 13611371.
  • Qiu L., Wu D., Ali S., Cai S., Dai F., Jin X., Wu F. & Zhang G. (2010) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theoretical and Applied Genetics 122, 695703.
  • Qiu Q.-S., Guo Y., Dietrich M.A., Schumaker K.S. & Zhu J.-K. (2002) Regulation of SOS1, a plasma membrane Na+ /H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America 99, 84368441.
  • Quesada V., Garcia-Martinez S., Piqueras P., Ponce M.R. & Micol J.L. (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiology 130, 951963.
  • Rauh B., Basten C., Buckler S 4th (2002) Quantitative trait loci analysis of growth response to varying nitrogen sources in Arabidopsis thaliana. Theoretical and Applied Genetics 104, 743750.
  • Ren Z., Zheng Z., Chinnusamy V., Zhu J., Cui X., Iida K. & Zhu J.-K. (2010) RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 107, 56695674.
  • Ren Z.-H., Gao J.-P., Li L.-G., Cai X.-L., Huang W., Chao D.-Y., Zhu M.-Z., Wang Z.-Y., Luan S. & Lin H.-X. (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics 37, 11411146.
  • Roy S.J., Tucker E.J. & Tester M. (2011) Genetic analysis of abiotic stress tolerance in crops. Current Opinion in Plant Biology 14, 232239.
  • Rus A., Lee B.-H, Munoz-Mayor A., Sharkhuu A., Miura K., Zhu J.-K., Bressan R.A. & Hasegawa P.M. (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiology 136, 25002511.
  • Rus A., Baxter I., Muthukumar B., Gustin J., Lahner B., Yakubova E. & Salt D.E. (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genetics 2, 19641973.
  • Schachtman D.P., Lagudah E.S. & Munns R. (1992) The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theoretical and Applied Genetics 84, 714719.
  • Schwab R., Ossowski S., Riester M., Warthmann N. & Weigel D. (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell 18, 11211133.
  • Shavrukov Y., Gupta N., Miyazaki J., Baho M., Chalmers K., Tester M., Langridge P. & Collins N. (2010) HvNax3 – a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Functional and Integrative Genomics 10, 277291.
  • Shi H., Ishitani M., Kim C. & Zhu J.-K. (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America 97, 68966901.
  • Shi H., Quintero F.J., Pardo J.M. & Zhu J.-K. (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell 14, 465477.
  • Singh R., Kemp J., Kollmorgen J., Qureshi J. & Fincher G. (1997) Fertile plant regeneration from cell suspension and protoplast cultures of barley (Hordeum vulgare cv. Schooner). Plant Cell, Tissue and Organ Culture 49, 121127.
  • Southern E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503508.
  • Sunarpi, Horie T., Motoda J., et al. (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal 44, 928938.
  • Thomson M., de Ocampo M., Egdane J., et al. (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3, 148160.
  • Toda K., Kuroiwa H., Senthil K., Shimada N., Aoki T., Ayabe S.-I., Shimada S., Sakuta M., Miyazaki Y. & Takahashi R. (2012) The soybean F3′H protein is localized to the tonoplast in the seed coat hilum. Planta 236, 7989.
  • Törjék O., Witucka-Wall H., Meyer R., von Korff M., Kusterer B., Rautengarten C. & Altmann T. (2006) Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theoretical and Applied Genetics 113, 15511561.
  • Tozlu I., Guy C.L. & Moore G. (1999) QTL analysis of Na+ and Cl- accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome Biology 42, 692705.
  • Tripathi V., Parasuraman B., Laxmi A. & Chattopadhyay D. (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. The Plant Journal 58, 778790.
  • Uozumi N., Kim E.J., Rubio F., Yamaguchi T., Muto S., Tsuboi A., Bakker E.P., Nakamura T. & Schroeder J.I. (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiology 122, 12491260.
  • Vallejo A.J., Yanovsky M.J. & Botto J.F. (2010) Germination variation in Arabidopsis thaliana accessions under moderate osmotic and salt stresses. Annals of Botany 106, 833842.
  • Villalta I., Reina-Sánchez A., Bolarín M., Cuartero J., Belver A., Venema K., Carbonell E. & Asins M. (2008) Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in tomato. Theoretical and Applied Genetics 116, 869880.
  • Wang J., Wu W., Zuo K., Fei J., Sun X., Lin J., Li X. & Tang K. (2004) Isolation and characterisation of a serine/threonine protein kinase SOS2 gene from Brassica napus. Cellular and Molecular Biology Letters. 9, 465473.
  • Waters B.M. & Grusak M.A. (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytologist 179, 10331047.
  • Wei W., Bilsborrow P.E., Hooley P., Fincham D.A., Lombi E. & Forster B.P. (2003) Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant and Soil 250, 183191.
  • Weigel D. & Glazebrook J. (2002) Arabidopsis: A Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY, USA.
  • Weinl S. & Kudla J. (2009) The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytologist. 184, 517528.
  • Wu S.J., Ding L. & Zhu J.K. (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. The Plant Cell 8, 617627.
  • Xiang Y., Huang Y.M. & Xiong L.Z. (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiology 144, 14161428.
  • Xu J., Yang C., Yuan Z., Zhang D., Gondwe M.Y., Ding Z., Liang W., Zhang D. & Wilson Z.A. (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. The Plant Cell 22, 91107.
  • Xue D., Huang Y., Zhang X., Wei K., Westcott S., Li C., Chen M., Zhang G. & Lance R. (2009) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169, 187196.
  • Xue S., Yao X., Luo W., Jha D., Tester M., Horie T. & Schroeder J.I. (2011) AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS ONE 6, e24725.
  • Yu Y.H., Xia X.L., Yin W.L. & Zhang H.C. (2007) Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regulation 52, 101110.
  • Zhao J., Sun Z., Zheng J., et al. (2009) Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Molecular Biology 69, 661674.
  • Zhu G.Y., Kinet J.M. & Lutts S. (2001) Characterization of rice (Oryza sativa L.) F3 populations selected for salt resistance. I. Physiological behaviour during vegetative growth. Euphytica 121, 251263.
  • Zhu J. (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247273.
  • Zhu J. (2003) Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6, 441445.
  • Zimmermann P., Hirsch-Hoddmann M., Hennig L. & Gruissem W. (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136, 26212632.