• Helianthus annuus;
  • isolate specificity;
  • partial resistance;
  • QTL-mapping;
  • sunflower black stem

Black stem, caused by Phoma macdonaldii, is one of the most important diseases of sunflower in the world. Quantitative trait loci (QTLs) implicated in partial resistance to two single pycnidiospore isolates of P. macdonaldii (MP8 and MP10) were investigated using 99 recombinant inbred lines (RILs) from the cross between sunflower parental lines PAC2 and RHA266. The experimental design was a randomized complete block with three replications. High genetic variability and transgressive segregation were observed among RILs for partial resistance to P. macdonaldii isolates. QTL-mapping was performed using a recently developed high-density SSR/AFLP sunflower linkage map. A total of 10 QTLs were detected for black stem resistance. The phenotypic variance explained by each QTL (R2) was moderate, ranging from 6 to 20%. Four QTLs were common between two isolates on linkage group 5 and 15 whereas the others were specific for each isolate. Regarding isolate-specific and isolate-nonspecific QTLs detected for partial resistance, it is evident that both genetic effects control partial resistance to the disease isolates. This confirms the need to consider different isolates in the black stem resistance breeding programmes. The four SSR markers HA3700, SSU25, ORS1097 and ORS523_1 encompassing the QTLs for partial resistance to black stem isolates could be good candidates for marker assisted selection.