Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus

Authors


E-mail: john.elphinstone@fera.gsi.gov.uk

Abstract

Phylogenies based on four loci confirmed the relatedness of all nine validly published species type strains within the Pseudomonas syringae species complex. To further establish the phylogenetic structure within the complex, all 67 pathovar type strains (with defined host ranges) were sequenced using a 578-nucleotide rpoD locus. Since this locus encompassed that used in a previous seven-locus study, it was possible to relate these strains to the existing phylogroup, genomospecies and binomial classifications. All species type strains were distinguished by relatively long branch lengths with all four loci, except for P. savastanoi, P. ficuserectae, P. meliae, P. amygdali and P. tremae, which were attributed to phylogroup 3. The grouping of P. tremae with these genomospecies-2 species was surprising since this species was previously designated as the sole representative of genomospecies 5. The oat pathogen P. syringae pv. coronafaciens was also distinguished by relatively long branch lengths with all four loci. The rpoD phylogeny grouped all the pathovar type strains into major clades that corresponded to previously defined phylogroups, except for two genomospecies-7 strains and P. caricapapayae, which were identified as a new phylogroup (6). There was good correlation between phylogroup and genomospecies classifications, except that two genomospecies-8 strains (P. avellanae and P. syringae pv. theae) were found as a distinct clade within phylogroup 1 along with P. syringae pvs morsprunorum and actinidiae. The rpoD locus will provide a common reference framework to improve monitoring and surveillance of these important pathogens.

Ancillary