SEARCH

SEARCH BY CITATION

References

  • Akaike H, 1969. Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics21, 2437.
  • Anonymous, 2008. Measurement of dew and leaf wetness. World Meteorological Organization Guide to Meteorological Instruments and Methods of Observation. Geneva, Switzerland: WMO, WMO-No. 8, section I.6.6.1.
  • Chen S, Zhang J, 1983. Studies on olive peacock’s eye disease, infection cycle and epidemiology. Acta Phytopathologica Sinica13, 3140.
  • Crous PW, Schubert K, Braun U et al. , 2007. Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Studies in Mycology58, 185217.
  • Dourado A, Ferreira E, Barbeiro P, 2007. VISRED – numerical data mining with linear and nonlinear techniques. In: Perner P, ed. Advances in Data Mining. Theoretical Aspects and Applications. Proceedings of the 7th Industrial Conference on Data Mining, July 14–18, 2007. Berlin, Germany: Springer-Verlag, 7.
  • Gadoury DM, MacHardy WE, 1982. A model to estimate maturity of ascospores of Venturia inaequalis. Phytopathology72, 9014.
  • Gadoury DM, MacHardy WE, 1986. Forecasting ascospore dose of Venturia inaequalis in commercial apple orchards. Phytopathology76, 1128.
  • Giosuè S, Rossi V, Ponti I, Bugiani R, 2000. Estimating the dynamics of airborne ascospores of Venturia inaequalis. EPPO Bulletin30, 13742.
  • Graniti A, 1993. Olive scab: a review. EPPO Bulletin23, 37784.
  • Holb I, 2006. Effect of six sanitation treatments on leaf litter density, ascospore production of Venturia inaequalis and scab incidence in integrated and organic apple orchards. European Journal of Plant Pathology115, 293307.
  • Laviola C, 1966. Contribution to the knowledge of the biology of Spilocaea oleagina (Cast.) Hugh. in Apulia. In: Proceedings of the First Congress of the Mediterranean Phytopathological Union, Bari, Italy. Firenze, Italy: Mediterranean Phytopathological Union, 32739.
  • Lops F, Frisullo S, Rossi V, 1993. Studies on spread of the olive scab pathogen, Spilocaea oleagina. EPPO Bulletin23, 3857.
  • Loussert R, Brousse G, 1978. L’Olivier. Paris, France: G.P. Maisonneuve et Larose.
  • MacDonald AJ, Walter M, Trought M, Frampton CM, Burnip G, 2000. Survey of olive leaf spot in New Zealand. New Zealand Plant Protection53, 12632.
  • Magarey RD, Seem RC, Russo JM, 2006. Grape canopy surface wetness: simulation versus visualisation and measurement. Agricultural and Forest Meteorology139, 36172.
  • Miller HN, 1949. Development of the leaf spot fungus in the olive leaf. Phytopathology39, 40310.
  • Obanor FO, Walter M, Jones EE, Jaspers MV, 2008a. Effect of temperature, relative humidity, leaf wetness and leaf age on Spilocaea oleagina conidium germination on olive leaves. European Journal of Plant Pathology120, 21122.
  • Obanor FO, Walter M, Jones EE, Jaspers MV, 2008b. Greenhouse and field evaluation of fungicides for control of olive leaf spot in New Zealand. Crop Protection27, 133542.
  • Obanor FO, Walter M, Jones EE, Candy J, Jaspers MV, 2010a. Genetic variation in Spilocaea oleagina population from New Zealand olive groves. Australasian Plant Pathology39, 50816.
  • Obanor FO, Walter M, Jones EE, Jaspers MV, 2010b. Effects of temperature, inoculum concentration, leaf age, and continuous and interrupted wetness on infection of olive plants by Spilocaea oleagina. Plant Pathology60, 1909.
  • Pappo S, Pelec J, 1958. La maladie “cycloconium” sur l’olivier et la lutte contre cette maladie. In: Fédération Internationale d’Oléiculture. Proceedings of the 1st Conférence Internationale des Techniciens Oléicoles, Tanger, Algérie. Madrid, Spain: Sucesores de Rivadeneyra, 47388.
  • Peacock L, Worner S, Pitt J, 2007. The application of artificial neural networks in plant protection. EPPO Bulletin37, 27782.
  • Prota U, 1958. Contribution to the pathology of the cultivated olive in Sardinia. I. Observations and investigations on the ‘peacock’s eye’ induced by Cycloconium oleagineum: infection period, appearance and evolution of leaf spots; phylloptosis; conidiogenesis. Annali della facoltà di Agraria, Universita di Sassari6, 25688.
  • Rossi V, Giosuè S, Bugiani R, 2007. A-scab: apple-scab, a simulation model for estimating risk of Venturia inaequalis primary infections. EPPO Bulletin32, 3008.
  • Schubert K, Ritschel A, Braun U, 2003. A monograph of Fusicladium s.lat. (Hyphomycetes). Schlechtendalia9, 71132.
  • Seber GAF, Wild CJ, 1989. Growth models. In: Seber GAF, Wild CJ, eds. Nonlinear Regression. New York, NY, USA: John Wiley & Sons, 32566.
  • Sentelhas PC, Gillespie TJ, Batzer JC et al. , 2005. Spatial variability of leaf wetness duration in different crop canopies. International Journal of Biometeorology49, 36370.
  • Sergeeva V, Braun U, Spooner-Hart R, Nair NG, 2009. Observations on spot caused by Fusicladium oleagineum on olives (Olea europaea) in New South Wales, Australia. Australasian Plant Disease Notes4, 268.
  • Shabi E, Birger R, Lavee S, 1994. Leaf spot (Spilocaea oleagina) of olive in Israel and its control. Acta Horticulturae356, 3904.
  • Tenerini I, 1964. Richerche sulla biologia de epidemiologia della Spilocaea oleagina (Cast.) Hug., agente dell’occhio di pavone dell’olivo. Phytopathologia Mediterranea3, 6370.
  • Van der Heyden H, Carisse O, Brodeur L, 2012. Comparison of monitoring based indicators for initiating fungicide spray programs to control botrytis leaf blight of onion. Crop Protection33, 218.
  • Viruega JR, Trapero A, 2002. Effect of temperature, wetness duration and leaf age on infection and development of leaf spot. Acta Horticulturae586, 797800.
  • Viruega JR, Roca LF, Moral J, Trapero A, 2011. Factors affecting infection and disease development on olive leaves inoculated with Fusicladium oleagineum. Plant Disease95, 113946.
  • Zarco A, Viruega JR, Roca LR, Trapero A, 2007. Detección de las infecciones latentes de Spilocaea oleagina en hojas de olivo. Boletín de Sanidad Vegetal: Plagas33, 23548.