SEARCH

SEARCH BY CITATION

Keywords:

  • biotroph;
  • host growth;
  • host–pathogen interaction;
  • Uncinula necator ;
  • viticulture

Grapevine leaves infected with powdery mildew are a source of inoculum for fruit infection. Leaves emerging on a single primary shoot of Vitis vinifera cv. Cabernet Sauvignon were exposed to average glasshouse temperatures of 18°C (0·23 leaves emerging/day) or 25°C (0·54 leaves emerging/day). All leaves on 8–10 shoots with approximately 20 leaves each were inoculated with Erysiphe necator conidia to assess disease severity after 14 days in the 25°C glasshouse. Two photosynthetic ‘source’ leaves per shoot on the remaining 8–10 shoots were treated with 14CO2 to identify, by autoradiography, the leaf position completing the carbohydrate sink-to-source transition. There was a clear association between the mean modal leaf position for maximum severity of powdery mildew (position 3·7 for 18°C; position 4·4 for 25°C) and the mean position of the leaf completing the sink-to-source transition (position 3·8 for 18°C; position 4·7 for 25°C). The mean modal leaf position for the maximum percentage of conidia germinating to form secondary hyphae was 4·2 for additional plants grown in the 25°C glasshouse. A higher rate of leaf emergence resulted in a greater proportion of diseased leaves per shoot. A Bayesian model, consisting of component models for disease severity and leaf ontogenic resistance, had parameters representing the rate and magnitude of pathogen colonization that differed for shoots developing in different preinoculation environments. The results support the hypothesis that the population of leaves in a vineyard capable of supporting substantial pathogen colonization will vary according to conditions for shoot development.