SEARCH

SEARCH BY CITATION

References

  • 1
    Mowat AM, Faria AM, Weiner HL. Oral tolerance: physiological basis and clinical applications. In: MesteckyJ, LammME, StroberW, BienenstockJ, McGheeJR, MayerL, eds. Mucosal Immunology, Vol. 1, 3rd edn. Amsterdam: Elsevier, 2005:487537.
  • 2
    Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med 2005;11(4 Suppl.): S4553.
  • 3
    Whitacre CC, Gienapp IE, Orosz CG, Bitar DM. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J Immunol 1991;147:215563.
  • 4
    Groux H, O'Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997;389:73742.
  • 5
    Thorstenson KM, Khoruts A. Generation of anergic and potentially immunoregulatory CD25+ CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 2001;167:18895.
  • 6
    Zhang X, Izikson L, Liu L, Weiner HL. Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol 2001;167:424553.
  • 7
    Nagatani K, Sagawa K, Komagata Y, Yamamoto K. Peyer's patch dendritic cells capturing oral antigen interact with antigen-specific T cells and induce gut-homing CD4(+)CD25(+) regulatory T cells in Peyer's patches. Ann NY Acad Sci 2004;1029:36670.
  • 8
    Hauet-Broere F, Unger WWJ, Garsen J et al. Functional CD25 and CD25+ mucosal regulatory T cells are induced in gut draining lymphoid tissue within 48 hours after oral antigen application. Eur J Immunol 2003;33:280110.
  • 9
    Itoh M, Takahashi T, Sakaguchi N et al. Thymus and autoimmunity: production of CD25+ CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999;162:531726.
  • 10
    Sakaguchi S, Sakaguchi N, Asano M et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155:115164.
  • 11
    Shevach EM. Regulatory T cells in autoimmmunity. Annu Rev Immunol 2000;18:42349.
  • 12
    Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004;22:53162.
  • 13
    Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198:187586.
  • 14
    Yagi H, Nomura T, Nakamura K et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004;16:164356.
  • 15
    Fontenot JD, Rasmussen JP, Williams LM et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005;22:32941.
  • 16
    Sun J-B, Raghavan S, Lundin S, Sjöling A, Yrlid U, Holmgren J. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+ CD25+ CD4+ and Foxp3 CD25 CD4+ regulatory T cells. J Immunol (under revision).
  • 17
    Sun J-B, Holmgren J, Czerkinsky C. Cholera toxin B subunit: an efficient transmucosal carrier-delivery system for induction of peripheral immunological tolerance. Proc Natl Acad Sci USA 1994;91:107959.
  • 18
    Sun J-B, Rask C, Olsson T, Holmgren J, Czerkinsky C. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc Natl Acad Sci USA 1996;93:7196201.
  • 19
    Sun J-B, Xiao B-G, Lindblad M et al. Oral administration of cholera toxin B subunit conjugated to myelin basic protein protects against experimental autoimmune encephalomyelitis by inducing TGF-β1 secreting cells and suppressing chemokine expression. Int Immunol 2000;12:144957.
  • 20
    Bergerot I, Ploix C, Petersen J et al. A cholera toxoid–insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc Natl Acad Sci USA 1997;94:46104.
  • 21
    Tarkowski A, Sun J-B, Holmdahl R, Holmgren J, Czerkinsky C. Treatment of experimental autoimmune arthritis by nasal administration of a type II collagen-cholera toxoid conjugate vaccine. Arthritis Rheum 1999;42:162834.
  • 22
    Phipps PA, Stanford MR, Sun J-B et al. Prevention of mucosally induced uveitis with a HSP60 derived epitope linked to cholera toxin B subunit. Eur J Immunol 2003;33:22432.
  • 23
    Cox LS, Linnemann DL, Nolte H et al. Sublingual immunotherapy: a comprehensive review. J Allergy Clin Immunol 2006; 117:102135.
  • 24
    Moingeon P, Batard T, Fadel R et al. Immune mechanisms of allergen-specific sublingual immunotherapy. Allergy 2006;61:15165.
  • 25
    Zheng SG, Wang JH, Gray JD et al. Natural and induced CD4+CD25+ cells educate CD4+CD25 cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 2004;172:521321.
  • 26
    Fantini MC, Becker C, Monteleone G et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+ CD25 T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004;172:514953.
  • 27
    Cuburu N, Luci C, Hervouet C et al. Sublingual Immunomodulation by Cholera Toxin and Non-toxin Derivatives. Presented at the Conference of New Approaches to Vaccine Development, Berlin, 2005 (Abstract 028).
  • 28
    Holmgren J, Harandi AM, Czerkinsky C. Mucosal adjuvants and anti-infection and anti-immunopathological vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Expert Rev Vaccines 2003;2:20517.
  • 29
    George-Chandy A, Eriksson K, Lebens M et al. Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD86 expression on antigen-presenting cells. Infect Immun 2001;69:571625.
  • 30
    Anjuere F, Lebenz M, Rousseau D et al. In Vivo CTB-induced Oral Tolerance Towards Antigen Specific CD4+ T Cells is Mediated by a Discrete Subset of Mesenteric Dendritic Cells. Presented at the 12th International Congress of Mucosal Immunology, Boston, 2005 (Abstract 52734).