• 1
    Figlin RA. Renal cell carcinoma: management of advanced disease. J Urol 1999;161:3816.
  • 2
    Hernberg M, Pyrhonen S, Muhonen T. Regimens with or without interferon-alpha as treatment for metastatic melanoma and renal cell carcinoma: an overview of randomized trials. J Immunother 1999;22:14554.
  • 3
    Verra N, De JD, Bex A et al. Infiltration of activated dendritic cells and T cells in renal cell carcinoma following combined cytokine immunotherapy. Eur Urol 2005;48:52733.
  • 4
    Engell-Noerregaard L, Hansen TH, Andersen MH, Thor SP, Svane IM. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 2009;58:114.
  • 5
    Slingluff CL Jr, Petroni GR, Yamshchikov GV et al. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 2003;21:401626.
  • 6
    Berard F, Blanco P, Davoust J et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 2000;192:153544.
  • 7
    Atkins MB. Cytokine-based therapy and biochemotherapy for advanced melanoma. Clin Cancer Res 2006;12(7 Pt 2):2353s8s.
  • 8
    Berntsen A, Trepiakas R, Wenandy L et al. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother 2008;31:77180.
  • 9
    Svane IM, Pedersen AE, Johansen JS et al. Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; application of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol Immunother 2007;56:148599. (accepted for publication).
  • 10
    Svane IM, Pedersen AE, Johnsen HE et al. Vaccination with p53 peptide pulsed dendritic cells of patients with advanced breast cancer:report from a phase I study. Cancer Immunol Immunother 2004;53:63341.
  • 11
    Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002;20:62167.
  • 12
    Liu LN, Shivakumar R, Allen C, Fratantoni JC. Delivery of whole tumor lysate into dendritic cells for cancer vaccination. Methods Mol Biol 2008;423:13953.
  • 13
    Thumann P, Moc I, Humrich J et al. Antigen loading of dendritic cells with whole tumor cell preparations. J Immunol Methods 2003;277:116.
  • 14
    Tamir A, Basagila E, Kagahzian A et al. Induction of tumor-specific T-cell responses by vaccination with tumor lysate-loaded dendritic cells in colorectal cancer patients with carcinoembryonic-antigen positive tumors. Cancer Immunol Immunother 2007;56:200316.
  • 15
    Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 2003;89:11729.
  • 16
    Salcedo M, Bercovici N, Taylor R et al. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol Immunother 2006;55:81929.
  • 17
    Kim JH, Lee Y, Bae YS et al. Phase I/II study of immunotherapy using autologous tumor lysate-pulsed dendritic cells in patients with metastatic renal cell carcinoma. Clin Immunol 2007;125:25767.
  • 18
    Avigan DE, Vasir B, George DJ et al. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother 2007;30:74961.
  • 19
    Kuwabara K, Nishishita T, Morishita M et al. Results of a phase I clinical study using dendritic cell vaccinations for thyroid cancer. Thyroid 2007;17:538.
  • 20
    Hus I, Schmitt M, Tabarkiewicz J et al. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8 +  T cells as well as CD4 + CD25 + FoxP3 +  regulatory T cells toward an antileukemia response. Leukemia 2008;22:100717.
  • 21
    De VS, Fieuws S, Rutkowski S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 2008;14:3098104.
  • 22
    Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 2003;21:71358.
  • 23
    Hong S, Qian J, Yang J, Li H, Kwak LW, Yi Q. Roles of idiotype-specific t cells in myeloma cell growth and survival: Th1 and CTL cells are tumoricidal while Th2 cells promote tumor growth. Cancer Res 2008;68:845664.
  • 24
    Mu LJ, Kvalheim G, Sæbøe-Larsen S et al. A Preclinical protocol exploring mRNA-transfected allogeneic monocytes as a potential cancer vaccine. Manuscript in preparation 2009 Jan 1.
  • 25
    Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 1999;93:163442.
  • 26
    Petersson M, Charo J, Salazar-Onfray F et al. Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol 1998;161:2099105.
  • 27
    Seo N, Hayakawa S, Tokura Y. Mechanisms of immune privilege for tumor cells by regulatory cytokines produced by innate and acquired immune cells. Semin Cancer Biol 2002;12:291300.
  • 28
    Kurte M, Lopez M, Aguirre A et al. A synthetic peptide homologous to functional domain of human IL-10 down-regulates expression of MHC class I and transporter associated with antigen processing 1/2 in human melanoma cells. J Immunol 2004;173:17317.
  • 29
    Wigginton JM, Gruys E, Geiselhart L et al. IFN-gamma and Fas/FasL are required for the antitumor and antiangiogenic effects of IL-12/pulse IL-2 therapy. J Clin Invest 2001;108:5162.
  • 30
    Manetti R, Gerosa F, Giudizi MG et al. Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones. J Exp Med 1994;179:127383.
  • 31
    Manetti R, Parronchi P, Giudizi MG et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 1993;177:1199204.
  • 32
    Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8 +  T cells in vivo by IL-15. Immunity 1998;8:5919.
  • 33
    Marks-Konczalik J, Dubois S, Losi JM et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A 2000;97:1144550.
  • 34
    Carrascal MT, Mendoza L, Valcarcel M et al. Interleukin-18 binding protein reduces b16 melanoma hepatic metastasis by neutralizing adhesiveness and growth factors of sinusoidal endothelium. Cancer Res 2003;63:4917.
  • 35
    Vidal-Vanaclocha F, Mendoza L, Telleria N et al. Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev 2006;25:41734.
  • 36
    Takeda K, Tsutsui H, Yoshimoto T et al. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 1998;8:38390.
  • 37
    Kaiga T, Sato M, Kaneda H, Iwakura Y, Takayama T, Tahara H. Systemic administration of IL-23 induces potent antitumor immunity primarily mediated through Th1-type response in association with the endogenously expressed IL-12. J Immunol 2007;178:757180.
  • 38
    Zhu X, Mulcahy LA, Mohammed RA et al. Interleukin-17 expression by breast cancer associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res 2008;10:R95.