• 1
    Bleakley M, Riddell SR. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 2004;4:37180.
  • 2
    Spaapen R, Mutis T. Targeting haematopoietic-specific minor histocompatibility antigens to distinguish graft-versus-tumour effects from graft-versus-host disease. Best Pract Res Clin Haematol 2008;21:54357.
  • 3
    Bleakley M, Riddell SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol 2011;89:396407.
  • 4
    Meadows L, Wang W, den Haan JM et al. The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity 1997;6:27381.
  • 5
    Wang W, Meadows LR, den Haan JM et al. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 1995;269:158890.
  • 6
    Pierce RA, Field ED, den Haan JM et al. Cutting edge: the HLA-A*0101-restricted HY minor histocompatibility antigen originates from DFFRY and contains a cysteinylated cysteine residue as identified by a novel mass spectrometric technique. J Immunol 1999;163:63604.
  • 7
    Ivanov R, Aarts T, Hol S et al. Identification of a 40S ribosomal protein S4-derived H-Y epitope able to elicit a lymphoblast-specific cytotoxic T lymphocyte response. Clin Cancer Res 2005;11:1694703.
  • 8
    Torikai H, Akatsuka Y, Miyazaki M et al. A novel HLA-A*3303-restricted minor histocompatibility antigen encoded by an unconventional open reading frame of human TMSB4Y gene. J Immunol 2004;173:704654.
  • 9
    Ofran Y, Kim HT, Brusic V et al. Diverse patterns of T-cell response against multiple newly identified human Y chromosome-encoded minor histocompatibility epitopes. Clin Cancer Res 2010;16:164251.
  • 10
    Warren EH, Gavin MA, Simpson E et al. The human UTY gene encodes a novel HLA-B8-restricted H-Y antigen. J Immunol 2000;164:280714.
  • 11
    Vogt MH, Goulmy E, Kloosterboer FM et al. UTY gene codes for an HLA-B60-restricted human male-specific minor histocompatibility antigen involved in stem cell graft rejection: characterization of the critical polymorphic amino acid residues for T-cell recognition. Blood 2000;96:312632.
  • 12
    Kawase T, Nannya Y, Torikai H et al. Identification of human minor histocompatibility antigens based on genetic association with highly parallel genotyping of pooled DNA. Blood 2008;111:328694.
  • 13
    Kawase T, Akatsuka Y, Torikai H et al. Alternative splicing due to an intronic SNP in HMSD generates a novel minor histocompatibility antigen. Blood 2007;110:105563.
  • 14
    Brickner AG, Warren EH, Caldwell JA et al. The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing. J Exp Med 2001;193:195206.
  • 15
    Spierings E, Brickner AG, Caldwell JA et al. The minor histocompatibility antigen HA-3 arises from differential proteasome-mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein. Blood 2003;102:6219.
  • 16
    den Haan JM, Sherman NE, Blokland E et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 1995;268:147680.
  • 17
    den Haan JM, Meadows LM, Wang W et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 1998;279:10547.
  • 18
    Pierce RA, Field ED, Mutis T et al. The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J Immunol 2001;167:322330.
  • 19
    van Bergen CA, Rutten CE, Van Der Meijden ED et al. High-throughput characterization of 10 new minor histocompatibility antigens by whole genome association scanning. Cancer Res 2010;70:907383.
  • 20
    Hombrink P, Hadrup SR, Bakker A et al. High-throughput identification of potential minor histocompatibility antigens by MHC tetramer-based screening: feasibility and limitations. PLoS ONE 2011;6:e22523.
  • 21
    Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003;423:82537.
  • 22
    Nielsen M, Lundegaard C, Blicher T et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and-B locus protein of known sequence. PLoS ONE 2007;2:e796.
  • 23
    Erup LM, Kloverpris H, Stryhn A et al. HLArestrictor – a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides. Immunogenetics 2011;63:4355.
  • 24
    Leisner C, Loeth N, Lamberth K et al. One-pot, mix-and-read peptide-MHC tetramers. PLoS ONE 2008;3:e1678.
  • 25
    Harndahl M, Rasmussen M, Roder G, Buus S. Real-time, high-throughput measurements of peptide-MHC-I dissociation using a scintillation proximity assay. J Immunol Methods 2011;2:512.
  • 26
    Kornblit B, Masmas T, Madsen HO et al. Haematopoietic cell transplantation with non-myeloablative conditioning in Denmark: disease-specific outcome, complications and hospitalization requirements of the first 100 transplants. Bone Marrow Transplant 2008;41:8519.
  • 27
    McSweeney PA, Niederwieser D, Shizuru JA et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001;97:3390400.
  • 28
    Kollgaard T, Petersen SL, Hadrup SR et al. Evidence for involvement of clonally expanded CD8 +  T cells in anticancer immune responses in CLL patients following nonmyeloablative conditioning and hematopoietic cell transplantation. Leukemia 2005;19:227380.