SEARCH

SEARCH BY CITATION

ABSTRACT

Sequences of laminated limestones found within thin Carboniferous carbonate strata of northeastern Kentucky were studied to determine their origin and palaeo-environmental significance. These laminated zones are strikingly similar to Holocene and Pleistocene surficial calcareous crusts (caliche) profiles that occur in various parts of the world.

Carboniferous laminated carbonates are associated with shallow marine carbonate units, palaeokarst, and overlying palaeosol zones. A typical laminated profile ranges in thickness from 1 to 2 m and contains brecciated, light olive-grey to brown micrite that lacks distinctive bedding. Structures and textures common in most profiles include: (1) calcareous and silicious laminae (laminae form diffuse, alternating light and dark bands that generally parallel bedding but often fill fractures and vugs within the rocks); (2) particles (allochems, and micrite and microspar fragments) coated by brown microcrystalline calcite; (3) brecciated texture; (4) circular to elliptical fossil moulds (occur in sinuous patterns and fill fractures within the rocks); (5) large and small scale fracture patterns.

Subaerial weathering and vadose diagenesis of carbonate mud banks or islands is suggested as a mechanism for the formation of these Carboniferous calcareous crust profiles. These ‘crusts’ formed by a combination of solution (karsting), brecciation, and soil development that transformed an exposed marine biomicrite (‘host’ rock) into a porous subsoil rubble. Laminated ‘crusts’ and coated particles developed as the result of dissolution and reprecipitation of CaCO3 and SiO3 from the soil and carbonate bedrock.

Carboniferous laminated carbonates in northeastern Kentucky are often referred to as ‘algal limestones’ because of their superficial similarity to some modern and ancient algal structures. This study, however, reveals numerous characteristics that can only be explained by diagenesis in a subaerial environment.