Petrography, chemistry and origin of early diagenetic concretions in the Lower Carboniferous of the Isle of Man



Three silicified limestone horizons of D1 age from the Visean of the Isle of Man contain calcitic concretions with peripheral silica crusts, occasionally surrounded by a further calcitic layer. Components of the original sediment include carbonate skeletons, carbonaceous grains, sponge spicules and muscovite. Diagenetic products include calcite, dolomite, pyrite, sphalerite, clays, feldspar and quartz.

The concretions are composed of neomorphic calcite. The time of recrystallization and the identity of the neomorphic precurosor are both unknown. Displacive, fibrous calcite is chemically similar to neomorphic calcite and both are of early diagenetic age. Granular and rhombic ferroan calcites are of late diagenetic age and were precipitated from pore-waters with Sr/Ca, Mg/Ca and Fe/Ca ratios unlike those of seawater.

The difference between early silicification which produced silica crusts and later diffuse silicification of the host sediment is related to a change in sediment transmissivity between the two silicification periods.

A four-fold scheme of concretionary growth is proposed. The supply of silica is from sponge spicules and that of carbonate from seawater via porewater. The distribution of organic matter, either as sporadic large carcasses or as small carcasses concentrated in particular horizons, is believed to be vital for carbonate precipitation and controls the distribution of concretions.

Awareness of the multiplicity of diagenetic changes is essential in interpretation of early porewater systems and in the origin of products which are often metastable and destined to subsequent changes. No single model is an explanation for all types of concretionary growth.