Early diagenetic phosphate cements in the Albian condensed glauconitic limestone of the Tatra Mountains, Western Carpathians



Early diagenetic phosphate cements are described from the Albian condensed glauconitic limestone of the Tatra Mountains, Western Carpathians with regard to their macro- and micromorphology, distribution, classification, and genesis. The cements occur within stratigraphically condensed semi-pelagic foramini-feral-glauconitic layers and are associated with mature hardgrounds within the Tatra Albian limestone. Phosphate cement fabrics consist of crypto- to microcrystalline carbonate-fluorapatite, and they occur as: (i) rim envelopes, (ii) infillings of intraparticle porosity, (iii) rim cement, (iv) multiple rim cement, (v) palisade fabric and (vi) cluster cement. Micromorphological variability of the cement fabrics results from varying texture of the cemented sediment, the nature of original porosity, as well as from presence of associated microbial fabrics. The microbial fabrics are interpreted as fossilized coccoid cyanobacteria.

Phosphate cementation developed under peculiar early diagenetic conditions within semi-closed microenvironments rich in organic matter in the marine phreatic environment. The cementation contributed to the formation of phosphatic fossils and hardgrounds. The accretion of the cements was due to concentration of biologically uptaken phosphorus near the sediment/water interface, enrichment of pore fluids with respect to phosphate, and its precipitation within restricted microenvironments. Phosphate cementation post-dated seafloor formation of pelletal glauconite but predated partial decomposition of organic matter as well as dissolution or neomorphism of aragonite and high-Mg calcite. Phosphate cementation occurred on a carbonate platform following the submersion of Urgonian reefal build-ups. Episodes of phosphate cementation were repeated during the sedimentation of the Tatra Albian limestone as a response to rapid relative sea-level rises and increased influence of nutrient-rich Tethyan waters.