Sediment pathways and transport rates through a tide-dominated entrance, Rangaunu Harbour, New Zealand

Authors


ABSTRACT

Bed load sediment traps were deployed at two sections across channels in Rangaunu Harbour entrance. Traps were inspected and emptied by divers at hourly intervals through both spring and neap tidal cycles for a total of 292 trap deployments. Current velocities were measured simultaneously with the trap inspections. Transport is concentrated in sandy megaripple fields on the channel banks and sub-tidal platforms flanking the channels. There, transport is almost continuous throughout the tidal cycle, increasing with flow velocity but lagging by approximately one hour. The channel floors are lined with shell-gravel lag across which bedload transport rates are low and discontinuous. Tidal asymmetry produces a net seaward transport through the channel troughs and a net landward transport across the channel banks and flanking sub-tidal platforms. Sediment leaving the harbour recirculates in anticlockwise gyres across the ebb-tide delta to re-enter the harbou and maintain the supply of sand to the megaripple field. Transport during spring tides is typically 25–30 times that during neaps. Predictions of transport rates, from a method developed by Black & Healy utilizing the Yalin bedload equation, produced transport rates similar to the traps over sand beds. Transport over shell lag surfaces appears independent of near-bed velocity and more dependent on the passage of ribbons of sand across the lag surface.

Ancillary