Time-sequence observations of wave-formed sand ripples on an ocean shoreface



Analysis of an 18-day time-lapse film record of shoreface ripple development, with concurrent measurements of near-bottom flow and surface waves, provides new insight on equilibrium bedform conditions, adjustment of ripple planform to variable hydrodynamics, and ripple migration behaviour. The study was conducted in approximately 10 m water depth, 1 km off Martinique Beach on the Atlantic coast of Nova Scotia (Canada), under low-energy summer wave conditions. Significant wave-height and peak period during the study averaged 0–7 m and 8 s, respectively, with extremes up to 1–7 m and 11 s during passage of three weak weather disturbances. Six mutually exclusive ripple types have been defined: (1) short-wavelength regular ripples; (2) variable bifurcated ripples; (3) variable terminated ripples; (4) short-crested ripples; (5) long-wavelength regular ripples; and (6) chaotic ripples. Ripple wavelength ranged from 0–07 m to 0–24 m and displayed a strong Reynolds number dependence. Together with other published field data, the results suggest a lower limit of γ=0–06 m for the wavelength of wave ripples in ocean shoreface environments. Ripple orientation ranged through 38° and responded rapidly to changes in wave approach direction, but did not conform to the orientation of the adjacent shoreline. Ripples were observed to migrate both on- and off-shore (with and against the wave advance direction) at rates up to ±0–1 m h-1, associated with net flows other than wave-induced onshore asymmetry and mass transport. Migration (mainly of ripple types 1 and 2) occurred during the peak of storm events, but showed no obvious correlation with measured near-bottom flow magnitude or direction. Ripple behaviour demonstrates equilibrium with prevailing dynamic conditions when straight-crested rippie types 1 and 5 are present. Disequilibrium in orientation or dimensions is expressed by increasing sinuosity, bifurcation and crest termination in types 2,3,4 and 6.