Cathodoluminescent bimineralic ooids from the Pleistocene of the Florida continental shelf



A bored and encrusted late Pleistocene ooid grainstone was recovered from the seafloor at a depth of approximately 40 m on the outer continental shelf of eastern Florida. Ooid cortices are dominantly bimineralic, generally consisting of inner layers of radial magnesian calcite and outer layers of tangential aragonite. Ooid nuclei are dominantly rounded cryptocrystalline grains, although quartz grains and a variety of skeletal grains also occur as nuclei. Ooids are partially cemented by blocky calcite, and interparticle porosity is partially filled by micrite.

Radial cortex layers are composed of brightly cathodoluminescent magnesian calcite having a composition of approximately 12 mol% MgCO3 and 1000 ppm strontium. The iron and manganese concentrations in radial cortex layers are generally in the range of 500–1000 ppm and 100–250 ppm, respectively. Tangential cortex layers are composed of noncathodoluminescent aragonite containing approximately 11 500 ppm strontium and less than 0.5 mol% MgCO3. Iron concentrations in tangential cortex layers are generally in the range of 150–400 ppm, and manganese concentrations are generally below the detection limit of 100 ppm. Echinoderm skeletal fragments, which are present as accessory grains, are composed of brightly cathodoluminescent magnesian calcite. Some ooid nuclei and the thin outer edges of some blocky calcite cement are cathodoluminescent; micrite matrix and the bulk of blocky calcite cement are noncathodoluminescent. Ooids do not exhibit textural evidence of recrystallization.

The ooid grainstone underwent an episode of meteoric diagenesis. but ooid cortices were not affected by the event. We propose a previously unrecognized process by which the magnesian calcite cortex layers underwent diagenetic alteration in oxygen-depleted seawater. During this diagenesis, magnesium was lost and manganese was incorporated without apparent textural alteration and without mineralogical stabilization. Thus, we Suggest that cathodoluminescence may result from diagenetic alteration on the sea-floor.