SEARCH

SEARCH BY CITATION

ABSTRACT

The Upper Ordovician rocks of Hadeland, Norway, form a sequence of thin bedded nodular limestones (wackestones) and shales, hosting five distinctive sedimentary breccia complexes. These breccias contain blocks of varying sizes and shapes in a wackestone and grainstone matrix. Blocks differ in lithology, and in their included biotas and cement sequences.

The thin bedded limestones are interpreted as turbidites, deposited against a background of hemipelagic calcareous shales. The breccias occupy channels cut into this sequence. The lithologies and biotas of blocks in the breccias record deposition in differing sedimentary environments, whereas their cements are the results of contrasting diagenetic histories. Blocks were eroded from a diverse and mature carbonate platform, close to sea level, which probably lay 5–10 km east of Hadeland. The breccias are interpreted as debris flow deposits, transported as channellized flows. Following channel cutting events, perhaps triggered by sea level change, channels were characterized by deposition rather than erosion. Wackestones and grainstones associated with the breccias also reflect resedimentation, their less diverse biota suggesting local derivation on the slope. The reworking of calcarenaceous muds locally produced clean washed calcarenites (now grainstones).

A fall in sea level resulted in emergence of the upper slope and erosion of the debris flow complex to form caverns and fissures. As sea level rose again crinoidal calcarenites, now grainstones, were deposited within these cavities.

Cement sequences in blocks record early marine and burial conditions on the shelf, and also precipitation of new marine cements following downslope transport. Those cements in lithologies formed in situ document later shallowing, culminating in emergence. The localized dissolution of cements in both blocks and associated grainstones reflects the infiltration of ‘aggressive’meteoric waters through permeable channel deposits. A subsequent rise in sea level is recorded in the generation of an additional marine cement with final burial reflected in the deposition of blocky calcite. The debris flow deposits therefore maintained their distinctive character from deposition through diagenesis.