Void-filling deposits in karst terrains of isolated oceanic islands: a case study from Tertiary carbonates of the Cayman Islands

Authors


ABSTRACT

Caves, fossil mouldic cavities, sinkholes and solution-widened joints are common in the Cayman and Pedro Castle members of the Bluff Formation (Oligocene-Miocene) on Grand Cayman and Cayman Brac because they have been subjected to repeated periods of karst development over the last 30 million years. Many voids contain a diverse array of sediments and/or precipitates derived from marine or terrestrial environs, mineral aerosols, and groundwater. Exogenic sediment was transported to the cavities by oceanic storm waves, transgressive seas, runoff following tropical rain storms and/or in groundwater.

At least three periods of deposition were responsible for the occlusion of voids in the Cayman and Pedro Castle members. Voids in the Cayman Member were initially filled or partly filled during the Late Oligocene and Early Miocene. This was terminated with the deposition of the Pedro Castle Member in the Middle Miocene. Subsequent exposure led to further karst development and void-filling sedimentation in both the Cayman and Pedro Castle members. Speleothems are notably absent. The void-filling deposits formed during these two periods, which were predominantly marine in origin, were pervasively dolomitized along with the host rock 2–5 million years ago. The third period of void-filling deposition, after dolomitization of the Bluff Formation, produced limestone, various types of breccia, terra rossa, speleothemic calcite and terrestrial oncoids. Most of these deposits formed since the Sangamon highstand 125 000 years ago. Voids in the present day karst are commonly filled or partly filled with unconsolidated sediments.

Study of the Bluff Formation of Grand Cayman and Cayman Brac shows that karst terrains on isolated oceanic islands are characterized by complex successions of void-filling deposits that include speleothems and a variety of sediment types. The heterogenetic nature of these void-filling deposits is related to changes in sea level and climatic conditions through time.

Ancillary