SEARCH

SEARCH BY CITATION

ABSTRACT

Detailed models already exist that outline physical and temporal relationships in marine and marginal marine strata. Such models are still in their infancy in alluvial deposits. Recognition of tidal and estuarine influence in fluvial strata is critical to the development of high resolution sequence stratigraphic correlations between marine and non-marine strata. Strata that have previously been interpreted as low energy meandering river deposits contain sedimentary and biogenic structures that suggest a tidal influence. These structures include sigmoidal bedding, paired mud/silt drapes, wavy and lenticular bedding, shrinkage cracks, multiple reactivation surfaces, inclined heterolithic strata, complex compound cross-beds, bidirectional cross-beds, and trace fossils including Teredolites, Arenicolites and Skolithos. Although none of these structures is unique to tidal processes, the preponderance of data suggests that fluvial systems have been affected by tidal processes well inland of coeval shoreline deposits. These deposits rarely form a significant proportion of a depositional sequence; however, their occurrence allows time significant surfaces to be extended for tens or even hundreds of kilometres inland from coeval shoreline deposits.

In Turonian through Campanian strata exposed in the Kaiparowits Plateau of southern Utah, tidally influenced facies are recognized within at least two distinct stratigraphic levels that were deposited during periods of relatively rapid base level rise. These strata form part of an alluvial transgressive systems tract. Landward of each of the marine transgressive maxima, tidal facies are present in fluvial channels that are completely encased in non-marine strata at distances up to 65 km inland from a coeval palaeoshoreline. Our work suggests that such deposits may have gone unrecognized in the past, but they form a significant component of alluvial strata in many depositional sequences. Although these tidally influenced fluvial deposits may be difficult to recognize, they are temporally equivalent to marine maximum flooding surfaces and provide a chronostratigraphic correlation between alluvial and nearshore marine deposits.