Glaciation and tectonics in an active intracratonic basin: the Late Palaeozoic Itararé Group, Paraná Basin, Brazil

Authors


ABSTRACT

The Paraná Basin (1 600 000 km2) is the largest intracratonic basin in southern South America and contains a thick (1300 m) Permo-Carboniferous glacial succession (the Itararé Group). This paper describes over 1700 m of drill core recovered during recent exploration for oil and gas. Itararé Group sediments consist of massive and stratified diamictites interbedded with massive and graded sandstones, and massive and laminated mudstones. Facies are interpreted as the product of sediment gravity flows in a glacially influenced marine basin.

Three stratigraphic formations can be defined across the basin, each consisting of a lowermost sandstone-rich member overlain by a diamictite-rich member. Examination of Itararé Group rocks both in core and outcrop shows that depositional processes were influenced by active faulting and downslope resedimentation on relatively steep and unstable substrate slopes. Primary glacial deposits such as tillites and associated striated pavements occur along the present eastern outcrop belt which probably coincided with the eastern basin margin during deposition of the Itararé Group. Ice masses fringing the eastern (southern African) and western (Bolivian) basin margins supplied sediment to the basin in the form of fluvio-glacial deltas, fans and floating ice tongues. This sediment was then resedimented downslope as debris flows and turbidites.

Both stratigraphic relationships and the regional distribution of facies types identify a clear pattern of basin subsidence and step-wise expansion by outward faulting within Late Proterozoic mobile belts. The position of successive basin margins can be related to specific lineament structures in the underlying basement. Asymmetric expansion of the Paraná Basin occurred along the northern and southern basin margins during deposition of the Itararé Group; this expansion probably reflects shallow crustal adjustments activated by collisional movements along the Andean margin of South America during the Hercynian Orogeny.

Ancillary