Sediment suspension under waves and currents: time scales and vertical structure

Authors


ABSTRACT

Field measurements of the vertical structure of near-bed suspended sediment concentrations were obtained from arrays of fast response optical backscatter suspended solids sensors to examine the time-dependent response of sediment resuspension to waves and currents and the constraints imposed by bedforms. Data were recorded from both a nonbarred, marine shoreface and a barred lacustrine shoreface, under both shoaling and breaking waves (significant heights of 0·25–1·50m; peak periods of 3 and 8 s) and in water depths of 0·5–5·0 m. Sediment concentrations are positively correlated with increasing elevation above the bed, but lagged in time. The time lag varies directly with separation distance between measurement locations and inversely with the horizontal component of the near-bed oscillatory velocity.

Both the presence of wave groups and the settling velocities of the sediment particules in suspension influence the temporal changes in concentration at a given elevation. Sediment concentrations appear to respond more slowly to the incident wind-wave forcing with distance away from the bed as a result of two factors: (1) the sequential increase in concentration induced by a succession of large waves in a group; and (ii) the relative increase in finer sediments with smaller settling velocities. Bedforms interact with the near-bed horizontal currents to impose a distinct constraint upon the timing of suspension events relative to the phase of the fluid motion, and, therefore, the vertical structure of the suspended sediment concentration at a range of time scales. The near-bed concentrations appear to be strongly dependent upon the vertical convection of sediment associated with the ejection from the wave boundary layer of separation vortices generated in the lee of ripple crests. Concentration gradients in the presence of vortex ripples are large, as are the correlation between concentrations measured at different elevations within the fluid.

Ancillary