Sedimentology and isotope geochemistry of lacustrine carbonates of the Oligocene Campins Basin, north-east Spain



The non-marine Campins Basin developed in the Oligocene, during a period of early rifting of the Catalan Coastal Ranges. Lacustrine deposits, interbedded between two alluvial units, comprise shallow and deep lacustrine facies. The lower, shallow lacustrine facies are made up of microbialite buildups and thin limestone beds. In the studied area, these facies are overlain by deep lacustrine facies which consist of alternations of several, metre-thick carbonate- and mudstone-dominated intervals. In addition to calcite, which is characteristic of the shallow lacustrine facies, aragonite and abundant dolomite are present in the deep lacustrine facies. This mineralogical change in the sequence reflects an overall increase in the Mg/Ca ratio of the lake waters. The deep lacustrine sequences are interpreted as having formed in a hydrologically closed basin that was subject to changes in the Mg/Ca ratio of the water, probably related to variations in the evaporation/precipitation rate.

The sedimentological, mineralogical and isotopic characteristics of the Campins Basin dolomites suggest that, in general, they are primary in origin. The stable isotope data show an approximate covariance between δ13C and δ18O in the lower shallow lacustrine carbonates (calcite) which suggests that they formed during the onset of closure of the lake. The δ13C and δ18O values of the deep lacustrine carbonates display three different clusters that are roughly related to the carbonate mineralogy. Normalisation with respect to calcite of the isotopic compositions of dolomite and aragonite from the deep lacustrine carbonates allows the integration of all these isotope values into one covariant trend.

The sequential appearance of different carbonate minerals and the isotopic covariant trend may indicate an overall evaporative concentration of the lake waters. The change in slope of the covariant trend for the isotope values between the shallow and the deep lacustrine carbonates might reflect the change in the waterbody morphology recorded in the basin fill sequence.