Lithofacies analysis, pollen assemblages and radiocarbon age dates of 20 stratigraphic drill holes are used to develop an evolutionary history for late Quaternary sedimentation in two coastal embayments landward of the central Great Barrier Reef. Different physiographic settings of the embayments result in two contrasting styles of sedimentary sequence: (a) an exposed, moderate energy, beach barrier-lagoon system (Wyvuri Embayment) and (b) a protected, low energy, muddy inlet fill sequence (Mutchero Inlet). Despite sharp contrast in sequence style, similar depositional cycles occur in both embayments in response to late Quaternary sea level fluctuations including: (1) a last interglacial highstand (+2 m; c. 125 000 yr bp) beach barrier (Wyvuri); (2) an early to mid-Holocene (8000–6100 yr bp) transgressive beach barrier-lagoon (Wyvuri) and estuarine infill (Mutchero); and (3) mid-Holocene to present highstand beach barrier (Wyvuri) and estuarine (Mutchero) progradation. Preservation of such cycles in the stratigraphic record would produce a series of vertically stacked and offset linear barrier sands surrounded by lagoonal mud and fine grained shoreface sediment juxtaposed to muddy, estuarine infills.

Sea level elevations are well recorded by the upward transition from Rhizophora-dominated intertidal mangrove mud to freshwater swamp (clearly identified by pollen analysis) and by the basal contacts of beach barrier sediments which sharply overlie the upper shoreface. Transgressive sedimentation is interrupted in both embayments by a constructional beach barrier (Wyvuri) and abbreviated progradation (Mutchero) corresponding to a — 5 m pause in relative sea level rise at c. 6800 yr bp. Sea level control of fine scale coastal sedimentation patterns is beginning to be widely recognized and provides an accurate analogue for stacked ancient sequences.