High-resolution sequence stratigraphy of a complex, incised valley succession, Cobequid Bay — Salmon River estuary, Bay of Fundy, Canada



The post-glacial succession in the Cobequid Bay — Salmon River incised valley contains two sequences, the upper one incomplete. The lower sequence contains only highstand system tracts (HST) deposits which accumulated under microtidal, glacio-marine deltaic conditions. The upper sequence contains two, retrogradationally stacked parasequences. The lower one accumulated in a wave-dominated estuarine environment under micro-mesotidal conditions. It belongs to the lowstand system tract (LST) or early transgressive system tract (TST) depending on the timing and location of the lowstand shoreline, and contains a gravel barrier that has been overstepped and preserved with little modification. The upper parasequence accumulated in the modern, macrotidal estuary, and is assignable to the late TST. Recent, net progradation of the fringing marshes indicates that a new HST has begun.

The sequence boundary separating the two sequences was formed by fluvial incision, and perhaps also by subtidal erosion during the relative sea level fall. Additional local erosion by waves and tidal currents occurred during the transgression. The base of the macrotidal sands is a prominent tidal ravinement surface which forms the flooding surface between the backstepping estuarine parasequences. Because fluvial deposition continued throughout the transgression, the fluvial-estuarine contact is diachronous and cannot be used as the transgressive surface. The maximum flooding surface will be difficult to locate in the macrotidal sands, but is more easily identified in the fringing muddy sediments.

These observations indicate that: (1) large incised valleys may contain a compound fill that consists of more than one sequence; (2) relative sea level changes determine the stratal stacking patterns, but local environmental factors control the nature of the facies and surfaces; (3) these surfaces may have complex origins, and commonly become amalgamated; (4) designation of the transgressive surface (and thus the LST) is particularly difficult as many of the prominent surfaces in the valley fill are diachronous facies boundaries; and (5) the transgression of complex topography may cause geologically instantaneous changes in tidal range, due to resonance under particular geographical configurations.