Sediment flux distribution in the Southern Brazil Basin during the late Quaternary: the role of deep-sea currents



Detailed sedimentological and stratigraphic analyses were carried out on seven Kullenberg cores collected across the Brazilian continental margin during the French cruises Byblos and Apsara III, in order to highlight the factors controlling the sediment flux distribution in the Southern Brazil Basin during the late Quaternary. On the continental slope and upper continental rise above 3000 m depth, sediment fluxes are important and highly variable (4·2–14·2 g cm−2 10−3 yr). The sediments show a pelagic or turbiditic character, depending on the width of the shelf and proximity of canyons. The material is characterized by high kaolinite contents, and originates from the coastal rivers draining the South American continent north of Rio de Janeiro. On the middle continental rise between 3000 and 4000 m depth, sediment fluxes are the lowest observed in the area (0·9 g cm−2 10−3 yr), because terrigenous input is trapped at shallower depths on the São Paulo Plateau. Pelagic settling is the dominant process. In the deep domains, below 4000 m depth, contouritic accumulations are developed on the path of the northwards moving Antarctic bottom water (AABW) currents. The deposits consist of fine-grained silty-clayey muds with very low carbonate contents. The sediment fluxes (1·45 g cm−2 10−3 yr) are higher than on the middle continental rise, as a consequence of fine-grained terrigenous supply derived from higher latitudes (Argentine Basin and Southern Ocean), and transported in the basin through the Vema Channel by the AABW currents. This material is characterized by high smectite and chlorite contents. These data reveal large sediment flux variations which are linked to distinct depth-related domains. Such a distribution is the consequence of the presence of two available sources of terrigenous sediments: (1) the Brazilian continental areas with a downslope material transport and a sediment distribution controlled by the morphology of the margin, and (2) the Argentine Basin with an alongslope material transport by deep-sea currents which dominate the sedimentation in the abyssal domains.